估计伯努利参数的最佳停车时间及其在主动成像中的应用

Safa C. Medin, John Murray-Bruce, Vivek K Goyal
{"title":"估计伯努利参数的最佳停车时间及其在主动成像中的应用","authors":"Safa C. Medin, John Murray-Bruce, Vivek K Goyal","doi":"10.1109/ICASSP.2018.8462676","DOIUrl":null,"url":null,"abstract":"We address the problem of estimating the parameter of a Bernoulli process. This arises in many applications, including photon-efficient active imaging where each illumination period is regarded as a single Bernoulli trial. We introduce a framework within which to minimize the mean-squared error (MSE) subject to an upper bound on the mean number of trials. This optimization has several simple and intuitive properties when the Bernoulli parameter has a beta prior. In addition, by exploiting typical spatial correlation using total variation regularization, we extend the developed framework to a rectangular array of Bernoulli processes representing the pixels in a natural scene. In simulations inspired by realistic active imaging scenarios, we demonstrate a 4.26 dB reduction in MSE due to the adaptive acquisition, as an average over many independent experiments and invariant to a factor of 3.4 variation in trial budget.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"27 1","pages":"4429-4433"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal Stopping Times for Estimating Bernoulli Parameters with Applications to Active Imaging\",\"authors\":\"Safa C. Medin, John Murray-Bruce, Vivek K Goyal\",\"doi\":\"10.1109/ICASSP.2018.8462676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of estimating the parameter of a Bernoulli process. This arises in many applications, including photon-efficient active imaging where each illumination period is regarded as a single Bernoulli trial. We introduce a framework within which to minimize the mean-squared error (MSE) subject to an upper bound on the mean number of trials. This optimization has several simple and intuitive properties when the Bernoulli parameter has a beta prior. In addition, by exploiting typical spatial correlation using total variation regularization, we extend the developed framework to a rectangular array of Bernoulli processes representing the pixels in a natural scene. In simulations inspired by realistic active imaging scenarios, we demonstrate a 4.26 dB reduction in MSE due to the adaptive acquisition, as an average over many independent experiments and invariant to a factor of 3.4 variation in trial budget.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"27 1\",\"pages\":\"4429-4433\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们讨论了估计伯努利过程参数的问题。这在许多应用中出现,包括光子高效主动成像,其中每个照明周期被视为单个伯努利试验。我们引入了一个框架,在其中最小化均方误差(MSE)受制于平均试验次数的上界。当伯努利参数具有beta先验时,这种优化具有几个简单直观的性质。此外,通过使用全变分正则化来利用典型的空间相关性,我们将开发的框架扩展到表示自然场景中像素的伯努利过程的矩形阵列。在真实的主动成像场景启发的模拟中,我们证明了由于自适应采集,MSE降低了4.26 dB,这是许多独立实验的平均值,并且不受试验预算3.4变化因子的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Stopping Times for Estimating Bernoulli Parameters with Applications to Active Imaging
We address the problem of estimating the parameter of a Bernoulli process. This arises in many applications, including photon-efficient active imaging where each illumination period is regarded as a single Bernoulli trial. We introduce a framework within which to minimize the mean-squared error (MSE) subject to an upper bound on the mean number of trials. This optimization has several simple and intuitive properties when the Bernoulli parameter has a beta prior. In addition, by exploiting typical spatial correlation using total variation regularization, we extend the developed framework to a rectangular array of Bernoulli processes representing the pixels in a natural scene. In simulations inspired by realistic active imaging scenarios, we demonstrate a 4.26 dB reduction in MSE due to the adaptive acquisition, as an average over many independent experiments and invariant to a factor of 3.4 variation in trial budget.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信