{"title":"估计伯努利参数的最佳停车时间及其在主动成像中的应用","authors":"Safa C. Medin, John Murray-Bruce, Vivek K Goyal","doi":"10.1109/ICASSP.2018.8462676","DOIUrl":null,"url":null,"abstract":"We address the problem of estimating the parameter of a Bernoulli process. This arises in many applications, including photon-efficient active imaging where each illumination period is regarded as a single Bernoulli trial. We introduce a framework within which to minimize the mean-squared error (MSE) subject to an upper bound on the mean number of trials. This optimization has several simple and intuitive properties when the Bernoulli parameter has a beta prior. In addition, by exploiting typical spatial correlation using total variation regularization, we extend the developed framework to a rectangular array of Bernoulli processes representing the pixels in a natural scene. In simulations inspired by realistic active imaging scenarios, we demonstrate a 4.26 dB reduction in MSE due to the adaptive acquisition, as an average over many independent experiments and invariant to a factor of 3.4 variation in trial budget.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"27 1","pages":"4429-4433"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal Stopping Times for Estimating Bernoulli Parameters with Applications to Active Imaging\",\"authors\":\"Safa C. Medin, John Murray-Bruce, Vivek K Goyal\",\"doi\":\"10.1109/ICASSP.2018.8462676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of estimating the parameter of a Bernoulli process. This arises in many applications, including photon-efficient active imaging where each illumination period is regarded as a single Bernoulli trial. We introduce a framework within which to minimize the mean-squared error (MSE) subject to an upper bound on the mean number of trials. This optimization has several simple and intuitive properties when the Bernoulli parameter has a beta prior. In addition, by exploiting typical spatial correlation using total variation regularization, we extend the developed framework to a rectangular array of Bernoulli processes representing the pixels in a natural scene. In simulations inspired by realistic active imaging scenarios, we demonstrate a 4.26 dB reduction in MSE due to the adaptive acquisition, as an average over many independent experiments and invariant to a factor of 3.4 variation in trial budget.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"27 1\",\"pages\":\"4429-4433\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Stopping Times for Estimating Bernoulli Parameters with Applications to Active Imaging
We address the problem of estimating the parameter of a Bernoulli process. This arises in many applications, including photon-efficient active imaging where each illumination period is regarded as a single Bernoulli trial. We introduce a framework within which to minimize the mean-squared error (MSE) subject to an upper bound on the mean number of trials. This optimization has several simple and intuitive properties when the Bernoulli parameter has a beta prior. In addition, by exploiting typical spatial correlation using total variation regularization, we extend the developed framework to a rectangular array of Bernoulli processes representing the pixels in a natural scene. In simulations inspired by realistic active imaging scenarios, we demonstrate a 4.26 dB reduction in MSE due to the adaptive acquisition, as an average over many independent experiments and invariant to a factor of 3.4 variation in trial budget.