Khaled Boumezbeur, Mourad Khebizi, M. Guenfoud, Ilies Guendouz
{"title":"用有限元法研究功能梯度材料薄复合梁的力学响应","authors":"Khaled Boumezbeur, Mourad Khebizi, M. Guenfoud, Ilies Guendouz","doi":"10.3311/ppci.21909","DOIUrl":null,"url":null,"abstract":"Functionally Graded Material (FGM) is a new generation of composite materials, it can be used for different engineering fields according to the loading environment, but the study of its mechanical behavior requires sophisticated numerical and analytical models. Several investigations in these models are available in the literature, however, most of those investigations are based on simplifying assumptions. In this paper, we present a three-dimensional finite element modeling of functionally graded material (FGM) beams subjected to static loading. Material properties are assumed to vary continuously along the beam thickness according to the power-law distribution with linear elastic behavior. The FGM beams are discretized by hexahedral finite elements type C3D20R (continuum stress/displacement, three-dimensional 20-node, reduced integration). We studied several numerical examples of FGM beams and compare the obtained numerical results with those of analytical models in the literature.\n \n ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Response of Thin Composite Beams Made of Functionally Graded Material Using Finite Element Method\",\"authors\":\"Khaled Boumezbeur, Mourad Khebizi, M. Guenfoud, Ilies Guendouz\",\"doi\":\"10.3311/ppci.21909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functionally Graded Material (FGM) is a new generation of composite materials, it can be used for different engineering fields according to the loading environment, but the study of its mechanical behavior requires sophisticated numerical and analytical models. Several investigations in these models are available in the literature, however, most of those investigations are based on simplifying assumptions. In this paper, we present a three-dimensional finite element modeling of functionally graded material (FGM) beams subjected to static loading. Material properties are assumed to vary continuously along the beam thickness according to the power-law distribution with linear elastic behavior. The FGM beams are discretized by hexahedral finite elements type C3D20R (continuum stress/displacement, three-dimensional 20-node, reduced integration). We studied several numerical examples of FGM beams and compare the obtained numerical results with those of analytical models in the literature.\\n \\n \",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.21909\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.21909","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical Response of Thin Composite Beams Made of Functionally Graded Material Using Finite Element Method
Functionally Graded Material (FGM) is a new generation of composite materials, it can be used for different engineering fields according to the loading environment, but the study of its mechanical behavior requires sophisticated numerical and analytical models. Several investigations in these models are available in the literature, however, most of those investigations are based on simplifying assumptions. In this paper, we present a three-dimensional finite element modeling of functionally graded material (FGM) beams subjected to static loading. Material properties are assumed to vary continuously along the beam thickness according to the power-law distribution with linear elastic behavior. The FGM beams are discretized by hexahedral finite elements type C3D20R (continuum stress/displacement, three-dimensional 20-node, reduced integration). We studied several numerical examples of FGM beams and compare the obtained numerical results with those of analytical models in the literature.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.