{"title":"通过使用无干预浮选铤,单趟下入多级完井衬管","authors":"W. Tait, M. Munawar","doi":"10.2118/205957-ms","DOIUrl":null,"url":null,"abstract":"\n Due to challenging market conditions, the drilling and completion industry has needed to put forth innovative deployment strategies in horizontal multi-stage completions. In difficult wellbores, the traditional method for deploying liners was to run drill pipe. The case studies discussed in this paper detail an alternative method to deploy liners in a single trip on the tieback string so the operator can reduce the overall costs of deployment. Previously, this was not practical because the tieback string weight could not overcome the wellbore friction in horizontal applications.\n In each case, a flotation collar is required to ensure there is enough hook load for deployment of the liner system. The flotation collars used are an interventionless design, utilizing a tempered glass barrier that shatters at a pre-determined applied pressure. The glass debris can be easily circulated through the well without damaging downhole components. This is done commonly on cemented liner and cemented monobore installations, but more rarely with open hole multi-stage completions. For open hole multi-stage completions, the initial installation typically requires an activation tool at the bottom of the well to set the hydraulically activated equipment above.\n Multiple validation tests were completed prior to installation by using an activation tool and flotation collar to ensure the debris could be safely circulated through the internals without closing the activation tool. These activation tools have relatively limited flow area and could cause an issue if the glass debris were to accumulate and shift it closed prematurely. Premature closing of the tool would leave expensive drilling fluids in contact with the reservoir, potentially harming production. For the test, the flotation collar was placed only two pup joints away from the activation tool, resulting in a worst-case scenario where a large amount of debris could potentially encounter the internals of the activation tool at one time. In a downhole environment the flotation collar is typically installed near the build or heel of the well, depending on wellbore geometry. The testing was successfully completed, and the activation tool showed no signs of loading. This resulted in a full-scale trial in the field where a 52 stage, open hole (OH) multi-stage fracturing (MSF) liner was deployed using this technology.\n Through close collaboration with the operator, an acceptable procedure was established to safely circulate the glass debris and further limit the risk of prematurely closing the activation tool. This paper discusses the OH and cemented MSF deployment challenges, detailed lab testing, and field qualification trials for the single trip deployed system. It also highlights operational procedures and best practices when deploying the system in this fashion. A method to calibrate a torque and drag model will also be explored as part of this discussion.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Trip Deployment of Multi-Stage Completion Liners Through the Used of Interventionless Flotation Collars\",\"authors\":\"W. Tait, M. Munawar\",\"doi\":\"10.2118/205957-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Due to challenging market conditions, the drilling and completion industry has needed to put forth innovative deployment strategies in horizontal multi-stage completions. In difficult wellbores, the traditional method for deploying liners was to run drill pipe. The case studies discussed in this paper detail an alternative method to deploy liners in a single trip on the tieback string so the operator can reduce the overall costs of deployment. Previously, this was not practical because the tieback string weight could not overcome the wellbore friction in horizontal applications.\\n In each case, a flotation collar is required to ensure there is enough hook load for deployment of the liner system. The flotation collars used are an interventionless design, utilizing a tempered glass barrier that shatters at a pre-determined applied pressure. The glass debris can be easily circulated through the well without damaging downhole components. This is done commonly on cemented liner and cemented monobore installations, but more rarely with open hole multi-stage completions. For open hole multi-stage completions, the initial installation typically requires an activation tool at the bottom of the well to set the hydraulically activated equipment above.\\n Multiple validation tests were completed prior to installation by using an activation tool and flotation collar to ensure the debris could be safely circulated through the internals without closing the activation tool. These activation tools have relatively limited flow area and could cause an issue if the glass debris were to accumulate and shift it closed prematurely. Premature closing of the tool would leave expensive drilling fluids in contact with the reservoir, potentially harming production. For the test, the flotation collar was placed only two pup joints away from the activation tool, resulting in a worst-case scenario where a large amount of debris could potentially encounter the internals of the activation tool at one time. In a downhole environment the flotation collar is typically installed near the build or heel of the well, depending on wellbore geometry. The testing was successfully completed, and the activation tool showed no signs of loading. This resulted in a full-scale trial in the field where a 52 stage, open hole (OH) multi-stage fracturing (MSF) liner was deployed using this technology.\\n Through close collaboration with the operator, an acceptable procedure was established to safely circulate the glass debris and further limit the risk of prematurely closing the activation tool. This paper discusses the OH and cemented MSF deployment challenges, detailed lab testing, and field qualification trials for the single trip deployed system. It also highlights operational procedures and best practices when deploying the system in this fashion. A method to calibrate a torque and drag model will also be explored as part of this discussion.\",\"PeriodicalId\":10896,\"journal\":{\"name\":\"Day 1 Tue, September 21, 2021\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, September 21, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205957-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205957-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single Trip Deployment of Multi-Stage Completion Liners Through the Used of Interventionless Flotation Collars
Due to challenging market conditions, the drilling and completion industry has needed to put forth innovative deployment strategies in horizontal multi-stage completions. In difficult wellbores, the traditional method for deploying liners was to run drill pipe. The case studies discussed in this paper detail an alternative method to deploy liners in a single trip on the tieback string so the operator can reduce the overall costs of deployment. Previously, this was not practical because the tieback string weight could not overcome the wellbore friction in horizontal applications.
In each case, a flotation collar is required to ensure there is enough hook load for deployment of the liner system. The flotation collars used are an interventionless design, utilizing a tempered glass barrier that shatters at a pre-determined applied pressure. The glass debris can be easily circulated through the well without damaging downhole components. This is done commonly on cemented liner and cemented monobore installations, but more rarely with open hole multi-stage completions. For open hole multi-stage completions, the initial installation typically requires an activation tool at the bottom of the well to set the hydraulically activated equipment above.
Multiple validation tests were completed prior to installation by using an activation tool and flotation collar to ensure the debris could be safely circulated through the internals without closing the activation tool. These activation tools have relatively limited flow area and could cause an issue if the glass debris were to accumulate and shift it closed prematurely. Premature closing of the tool would leave expensive drilling fluids in contact with the reservoir, potentially harming production. For the test, the flotation collar was placed only two pup joints away from the activation tool, resulting in a worst-case scenario where a large amount of debris could potentially encounter the internals of the activation tool at one time. In a downhole environment the flotation collar is typically installed near the build or heel of the well, depending on wellbore geometry. The testing was successfully completed, and the activation tool showed no signs of loading. This resulted in a full-scale trial in the field where a 52 stage, open hole (OH) multi-stage fracturing (MSF) liner was deployed using this technology.
Through close collaboration with the operator, an acceptable procedure was established to safely circulate the glass debris and further limit the risk of prematurely closing the activation tool. This paper discusses the OH and cemented MSF deployment challenges, detailed lab testing, and field qualification trials for the single trip deployed system. It also highlights operational procedures and best practices when deploying the system in this fashion. A method to calibrate a torque and drag model will also be explored as part of this discussion.