{"title":"有限域上的Fricke-Macbeath曲线上的点计数","authors":"Jaap Top, Carlo Verschoor","doi":"10.5802/JTNB.1019","DOIUrl":null,"url":null,"abstract":"The Fricke-Macbeath curve is a smooth projective algebraic curve of genus 7 with automorphism group PSL₂(픽₈). We recall two models of it (introduced, respectively, by Maxim Hendriks and by Bradley Brock) defined over ℚ, and we establish an explicit isomorphism defined over ℚ( −7 ) between these models. Moreover, we decompose up to isogeny over ℚ the jacobian of one of these models. As a consequence we obtain a simple formula for the number of points over 픽q on (the reduction of) this model, in terms of the elliptic curve with equation y² = x³ + x² − 114x − 127. Moreover, twists by elements of PSL₂(픽₈) of the curve over finite fields are described. The curve leads to a number of new records as maintained on manYPoints of curves of genus 7 with many rational points over finite fields.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"8 1","pages":"117-129"},"PeriodicalIF":0.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Counting points on the Fricke-Macbeath curve over finite fields\",\"authors\":\"Jaap Top, Carlo Verschoor\",\"doi\":\"10.5802/JTNB.1019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fricke-Macbeath curve is a smooth projective algebraic curve of genus 7 with automorphism group PSL₂(픽₈). We recall two models of it (introduced, respectively, by Maxim Hendriks and by Bradley Brock) defined over ℚ, and we establish an explicit isomorphism defined over ℚ( −7 ) between these models. Moreover, we decompose up to isogeny over ℚ the jacobian of one of these models. As a consequence we obtain a simple formula for the number of points over 픽q on (the reduction of) this model, in terms of the elliptic curve with equation y² = x³ + x² − 114x − 127. Moreover, twists by elements of PSL₂(픽₈) of the curve over finite fields are described. The curve leads to a number of new records as maintained on manYPoints of curves of genus 7 with many rational points over finite fields.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\"8 1\",\"pages\":\"117-129\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/JTNB.1019\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/JTNB.1019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Counting points on the Fricke-Macbeath curve over finite fields
The Fricke-Macbeath curve is a smooth projective algebraic curve of genus 7 with automorphism group PSL₂(픽₈). We recall two models of it (introduced, respectively, by Maxim Hendriks and by Bradley Brock) defined over ℚ, and we establish an explicit isomorphism defined over ℚ( −7 ) between these models. Moreover, we decompose up to isogeny over ℚ the jacobian of one of these models. As a consequence we obtain a simple formula for the number of points over 픽q on (the reduction of) this model, in terms of the elliptic curve with equation y² = x³ + x² − 114x − 127. Moreover, twists by elements of PSL₂(픽₈) of the curve over finite fields are described. The curve leads to a number of new records as maintained on manYPoints of curves of genus 7 with many rational points over finite fields.