Jongmyung Kim, Jihwan Park, Seunghyup Shin, Yongjoo Lee, K. Min, Sangyul Lee, Minjae Kim
{"title":"基于深度神经网络和遗传算法的虚拟传感器发动机NOx预测","authors":"Jongmyung Kim, Jihwan Park, Seunghyup Shin, Yongjoo Lee, K. Min, Sangyul Lee, Minjae Kim","doi":"10.2516/ogst/2021054","DOIUrl":null,"url":null,"abstract":"The Nitrogen Oxides (NOx) from engines aggravate natural environment and human health. Institutional regulations have attempted to protect the human body from them, while car manufacturers have tried to make NOx free vehicles. The formation of NOx emissions is highly dependent on the engine operating conditions and being able to predict NOx emissions would significantly help in enabling their reduction. This study investigates advanced method of predicting vehicle NOx emissions in pursuit of the sensorless engine. Sensors inside the engine are required to measure the operating condition. However, they can be removed or reduced if the sensing object such as the engine NOx emissions can be accurately predicted with a virtual model. This would result in cost reductions and overcome the sensor durability problem. To achieve such a goal, researchers have studied numerical analysis for the relationship between emissions and engine operating conditions. Also, a Deep Neural Network (DNN) is applied recently as a solution. However, the prediction accuracies were often not satisfactory where hyperparameter optimization was either overlooked or conducted manually. Therefore, this study proposes a virtual NOx sensor model based on the hyperparameter optimization. A Genetic Algorithm (GA) was adopted to establish a global optimum with DNN. Epoch size and learning rate are employed as the design variables, and R-squared based user defined function is adopted as the object function of GA. As a result, a more accurate and reliable virtual NOx sensor with the possibility of a sensorless engine could be developed and verified.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"42 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Prediction of engine NOx for virtual sensor using deep neural network and genetic algorithm\",\"authors\":\"Jongmyung Kim, Jihwan Park, Seunghyup Shin, Yongjoo Lee, K. Min, Sangyul Lee, Minjae Kim\",\"doi\":\"10.2516/ogst/2021054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Nitrogen Oxides (NOx) from engines aggravate natural environment and human health. Institutional regulations have attempted to protect the human body from them, while car manufacturers have tried to make NOx free vehicles. The formation of NOx emissions is highly dependent on the engine operating conditions and being able to predict NOx emissions would significantly help in enabling their reduction. This study investigates advanced method of predicting vehicle NOx emissions in pursuit of the sensorless engine. Sensors inside the engine are required to measure the operating condition. However, they can be removed or reduced if the sensing object such as the engine NOx emissions can be accurately predicted with a virtual model. This would result in cost reductions and overcome the sensor durability problem. To achieve such a goal, researchers have studied numerical analysis for the relationship between emissions and engine operating conditions. Also, a Deep Neural Network (DNN) is applied recently as a solution. However, the prediction accuracies were often not satisfactory where hyperparameter optimization was either overlooked or conducted manually. Therefore, this study proposes a virtual NOx sensor model based on the hyperparameter optimization. A Genetic Algorithm (GA) was adopted to establish a global optimum with DNN. Epoch size and learning rate are employed as the design variables, and R-squared based user defined function is adopted as the object function of GA. As a result, a more accurate and reliable virtual NOx sensor with the possibility of a sensorless engine could be developed and verified.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2021054\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021054","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Prediction of engine NOx for virtual sensor using deep neural network and genetic algorithm
The Nitrogen Oxides (NOx) from engines aggravate natural environment and human health. Institutional regulations have attempted to protect the human body from them, while car manufacturers have tried to make NOx free vehicles. The formation of NOx emissions is highly dependent on the engine operating conditions and being able to predict NOx emissions would significantly help in enabling their reduction. This study investigates advanced method of predicting vehicle NOx emissions in pursuit of the sensorless engine. Sensors inside the engine are required to measure the operating condition. However, they can be removed or reduced if the sensing object such as the engine NOx emissions can be accurately predicted with a virtual model. This would result in cost reductions and overcome the sensor durability problem. To achieve such a goal, researchers have studied numerical analysis for the relationship between emissions and engine operating conditions. Also, a Deep Neural Network (DNN) is applied recently as a solution. However, the prediction accuracies were often not satisfactory where hyperparameter optimization was either overlooked or conducted manually. Therefore, this study proposes a virtual NOx sensor model based on the hyperparameter optimization. A Genetic Algorithm (GA) was adopted to establish a global optimum with DNN. Epoch size and learning rate are employed as the design variables, and R-squared based user defined function is adopted as the object function of GA. As a result, a more accurate and reliable virtual NOx sensor with the possibility of a sensorless engine could be developed and verified.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.