定点Atan2的硬件实现

F. D. Dinechin, Matei Iştoan
{"title":"定点Atan2的硬件实现","authors":"F. D. Dinechin, Matei Iştoan","doi":"10.1109/ARITH.2015.23","DOIUrl":null,"url":null,"abstract":"The atan2 function computes the polar angle arctan(y/x) of a point given by its cartesian coordinates. It is widely used in digital signal processing to recover the phase of a signal. This article studies for this context the implementation of atan2 with fixed-point inputs and outputs. It compares the prevalent CORDIC shift-and-add algorithm to two multiplier-based techniques. The first one computes the bivariate atan2 function as the composition of two univariate functions: the reciprocal, and the arctangent, each evaluated using bipartite or polynomial approximation methods. The second technique directly uses piecewise bivariate polynomial approximations of degree 1 or 2. Each of these approaches requires a relevant argument reduction, which is also discussed. All the algorithms are last-bit accurate, and implemented with similar care in the open-source FloPoCo framework. Based on synthesis results on FPGAs, their relevance domains are discussed.","PeriodicalId":6526,"journal":{"name":"2015 IEEE 22nd Symposium on Computer Arithmetic","volume":"17 1","pages":"34-41"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Hardware Implementations of Fixed-Point Atan2\",\"authors\":\"F. D. Dinechin, Matei Iştoan\",\"doi\":\"10.1109/ARITH.2015.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The atan2 function computes the polar angle arctan(y/x) of a point given by its cartesian coordinates. It is widely used in digital signal processing to recover the phase of a signal. This article studies for this context the implementation of atan2 with fixed-point inputs and outputs. It compares the prevalent CORDIC shift-and-add algorithm to two multiplier-based techniques. The first one computes the bivariate atan2 function as the composition of two univariate functions: the reciprocal, and the arctangent, each evaluated using bipartite or polynomial approximation methods. The second technique directly uses piecewise bivariate polynomial approximations of degree 1 or 2. Each of these approaches requires a relevant argument reduction, which is also discussed. All the algorithms are last-bit accurate, and implemented with similar care in the open-source FloPoCo framework. Based on synthesis results on FPGAs, their relevance domains are discussed.\",\"PeriodicalId\":6526,\"journal\":{\"name\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"volume\":\"17 1\",\"pages\":\"34-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2015.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2015.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

atan2函数计算由直角坐标给出的点的极角arctan(y/x)。它广泛应用于数字信号处理中,用于恢复信号的相位。本文针对这种情况研究了具有定点输入和输出的atan2的实现。它将流行的CORDIC移位加算法与两种基于乘数的技术进行了比较。第一个计算二元atan2函数作为两个单变量函数的组合:倒数和arctan,每个函数都使用二分或多项式近似方法进行评估。第二种技术直接使用1或2次的分段二元多项式近似。这些方法中的每一种都需要一个相关的论点缩减,这也是我们讨论的。所有算法都是最后位精确的,并且在开源的FloPoCo框架中以类似的小心实现。基于fpga上的综合结果,讨论了它们的相关领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware Implementations of Fixed-Point Atan2
The atan2 function computes the polar angle arctan(y/x) of a point given by its cartesian coordinates. It is widely used in digital signal processing to recover the phase of a signal. This article studies for this context the implementation of atan2 with fixed-point inputs and outputs. It compares the prevalent CORDIC shift-and-add algorithm to two multiplier-based techniques. The first one computes the bivariate atan2 function as the composition of two univariate functions: the reciprocal, and the arctangent, each evaluated using bipartite or polynomial approximation methods. The second technique directly uses piecewise bivariate polynomial approximations of degree 1 or 2. Each of these approaches requires a relevant argument reduction, which is also discussed. All the algorithms are last-bit accurate, and implemented with similar care in the open-source FloPoCo framework. Based on synthesis results on FPGAs, their relevance domains are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信