基于小波帧压缩感知恢复的有效非凸正则化方法

Xiao-Juan Yang, Jin Jing
{"title":"基于小波帧压缩感知恢复的有效非凸正则化方法","authors":"Xiao-Juan Yang, Jin Jing","doi":"10.47260/JCOMOD/1111","DOIUrl":null,"url":null,"abstract":"Abstract\nIn this paper, we propose a variation model which takes advantage of the wavelet\ntight frame and nonconvex shrinkage penalties for compressed sensing recovery.\nWe address the proposed optimization problem by introducing a adjustable\nparameter and a firm thresholding operations. Numerical experiment results show\nthat the proposed method outperforms some existing methods in terms of the\nconvergence speed and reconstruction errors.\n\nJEL classification numbers: 68U10, 65K10, 90C25, 62H35.\nKeywords: Compressed Sensing, Nonconvex, Firm thresholding, Wavelet tight\nframe.","PeriodicalId":30638,"journal":{"name":"International Journal of Mathematical Modelling Computations","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Nonconvex Regularization Method for Wavelet Frame Based Compressed Sensing Recovery\",\"authors\":\"Xiao-Juan Yang, Jin Jing\",\"doi\":\"10.47260/JCOMOD/1111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract\\nIn this paper, we propose a variation model which takes advantage of the wavelet\\ntight frame and nonconvex shrinkage penalties for compressed sensing recovery.\\nWe address the proposed optimization problem by introducing a adjustable\\nparameter and a firm thresholding operations. Numerical experiment results show\\nthat the proposed method outperforms some existing methods in terms of the\\nconvergence speed and reconstruction errors.\\n\\nJEL classification numbers: 68U10, 65K10, 90C25, 62H35.\\nKeywords: Compressed Sensing, Nonconvex, Firm thresholding, Wavelet tight\\nframe.\",\"PeriodicalId\":30638,\"journal\":{\"name\":\"International Journal of Mathematical Modelling Computations\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Modelling Computations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47260/JCOMOD/1111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Modelling Computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47260/JCOMOD/1111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了一种利用小波紧框架和非凸收缩惩罚的压缩感知恢复变分模型。我们通过引入可调参数和确定阈值操作来解决所提出的优化问题。数值实验结果表明,该方法在收敛速度和重构误差方面都优于现有方法。JEL分类号:68U10、65K10、90C25、62H35。关键词:压缩感知,非凸,坚定阈值,小波紧框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Nonconvex Regularization Method for Wavelet Frame Based Compressed Sensing Recovery
Abstract In this paper, we propose a variation model which takes advantage of the wavelet tight frame and nonconvex shrinkage penalties for compressed sensing recovery. We address the proposed optimization problem by introducing a adjustable parameter and a firm thresholding operations. Numerical experiment results show that the proposed method outperforms some existing methods in terms of the convergence speed and reconstruction errors. JEL classification numbers: 68U10, 65K10, 90C25, 62H35. Keywords: Compressed Sensing, Nonconvex, Firm thresholding, Wavelet tight frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信