下壁非均匀加热方形多孔腔内自由流动的数值研究

IF 1.5 0 ENGINEERING, MULTIDISCIPLINARY
L. Saidi, S. Mekroussi, S. Kherris, D. Zebbar, B. Mébarki
{"title":"下壁非均匀加热方形多孔腔内自由流动的数值研究","authors":"L. Saidi, S. Mekroussi, S. Kherris, D. Zebbar, B. Mébarki","doi":"10.48084/etasr.4604","DOIUrl":null,"url":null,"abstract":"Natural convection in a steady state of incompressible air inside a cavity’s porous with a heated low wall of a sinusoidal profile is investigated numerically in this paper. The upper horizontal wall is kept cold while the two sides are thermally insulated. The proposed physical model was developed and studied with two-dimensional conditions, using the finite element method and adapting the Darcy-Brinkman model. This paper examines the laminar natural convection in a square porous cavity for different Rayleigh numbers (10 ≤ Ra ≤ 104), aspect ratios (0.25 ≤ AR ≤ 1.0), and sinusoidal temperature amplitude (0.25 ≤ λ ≤ 1.0). Moreover, the variation effect of Ra, AR, and λ on isotherms, streamlines, and the mean and local Nusselt numbers has been presented and analyzed. The results showed that an increase in the sinusoidal thermal amplitude, mean Nusselt number, and AR reduced somewhat the Rayleigh number. This provided a solution in which the mean Nusselt number increased by increasing the sinusoidal thermal amplitude and the Rayleigh number. On the other hand, it decreases slightly by increasing the AR. In addition, the convection transfer mechanism is the main mode when the Rayleigh number is high. Thus, it was found that the Darcy number also has an effect on heat transmission. The obtained results were compared with those found in the literature and were found to be in good accordance.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"16 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Numerical Investigation of the Free Flow in a Square Porous Cavity with Non-Uniform Heating on the Lower Wall\",\"authors\":\"L. Saidi, S. Mekroussi, S. Kherris, D. Zebbar, B. Mébarki\",\"doi\":\"10.48084/etasr.4604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural convection in a steady state of incompressible air inside a cavity’s porous with a heated low wall of a sinusoidal profile is investigated numerically in this paper. The upper horizontal wall is kept cold while the two sides are thermally insulated. The proposed physical model was developed and studied with two-dimensional conditions, using the finite element method and adapting the Darcy-Brinkman model. This paper examines the laminar natural convection in a square porous cavity for different Rayleigh numbers (10 ≤ Ra ≤ 104), aspect ratios (0.25 ≤ AR ≤ 1.0), and sinusoidal temperature amplitude (0.25 ≤ λ ≤ 1.0). Moreover, the variation effect of Ra, AR, and λ on isotherms, streamlines, and the mean and local Nusselt numbers has been presented and analyzed. The results showed that an increase in the sinusoidal thermal amplitude, mean Nusselt number, and AR reduced somewhat the Rayleigh number. This provided a solution in which the mean Nusselt number increased by increasing the sinusoidal thermal amplitude and the Rayleigh number. On the other hand, it decreases slightly by increasing the AR. In addition, the convection transfer mechanism is the main mode when the Rayleigh number is high. Thus, it was found that the Darcy number also has an effect on heat transmission. The obtained results were compared with those found in the literature and were found to be in good accordance.\",\"PeriodicalId\":11826,\"journal\":{\"name\":\"Engineering, Technology & Applied Science Research\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering, Technology & Applied Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48084/etasr.4604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.4604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

本文用数值方法研究了不可压缩空气在具有正弦波加热低壁的多孔腔内的稳态自然对流问题。上部水平墙保持低温,而两侧是隔热的。采用有限元方法,采用Darcy-Brinkman模型,在二维条件下建立并研究了所提出的物理模型。本文研究了不同瑞利数(10≤Ra≤104)、宽高比(0.25≤AR≤1.0)和正弦温度幅值(0.25≤λ≤1.0)条件下方形多孔腔内层流自然对流。此外,还分析了Ra、AR和λ对等温线、流线以及平均和局部努塞尔数的变化效应。结果表明,随着正弦热幅值、平均努塞尔数和反射率的增加,瑞利数有所降低。这提供了通过增加正弦热幅值和瑞利数来增加平均努塞尔数的解决方案。另一方面,增大反射率会使其略有降低。此外,瑞利数高时,对流传递机制是主要的模式。由此发现,达西数对传热也有影响。所得结果与文献中发现的结果进行了比较,发现两者吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Numerical Investigation of the Free Flow in a Square Porous Cavity with Non-Uniform Heating on the Lower Wall
Natural convection in a steady state of incompressible air inside a cavity’s porous with a heated low wall of a sinusoidal profile is investigated numerically in this paper. The upper horizontal wall is kept cold while the two sides are thermally insulated. The proposed physical model was developed and studied with two-dimensional conditions, using the finite element method and adapting the Darcy-Brinkman model. This paper examines the laminar natural convection in a square porous cavity for different Rayleigh numbers (10 ≤ Ra ≤ 104), aspect ratios (0.25 ≤ AR ≤ 1.0), and sinusoidal temperature amplitude (0.25 ≤ λ ≤ 1.0). Moreover, the variation effect of Ra, AR, and λ on isotherms, streamlines, and the mean and local Nusselt numbers has been presented and analyzed. The results showed that an increase in the sinusoidal thermal amplitude, mean Nusselt number, and AR reduced somewhat the Rayleigh number. This provided a solution in which the mean Nusselt number increased by increasing the sinusoidal thermal amplitude and the Rayleigh number. On the other hand, it decreases slightly by increasing the AR. In addition, the convection transfer mechanism is the main mode when the Rayleigh number is high. Thus, it was found that the Darcy number also has an effect on heat transmission. The obtained results were compared with those found in the literature and were found to be in good accordance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering, Technology & Applied Science Research
Engineering, Technology & Applied Science Research ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
46.70%
发文量
222
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信