关于第二类nielsen - kuznetsov函数泰勒级数表示的注记

IF 0.6
M. Hamdan, T. Alderson
{"title":"关于第二类nielsen - kuznetsov函数泰勒级数表示的注记","authors":"M. Hamdan, T. Alderson","doi":"10.37394/232020.2022.2.18","DOIUrl":null,"url":null,"abstract":"Taylor and Maclaurin series, and polynomial approximations of the Standard Nield-Kuznetsov function of the second kind are obtained in this work. Convergence and error criteria are developed. The obtained series represent alternatives to existing asymptotic and ascending series approximations of this integral function, and are expected to provide an efficient method of computation.","PeriodicalId":93382,"journal":{"name":"The international journal of evidence & proof","volume":"4 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Taylor Series Representation of the Nield-Kuznetsov Function of the Second Kind\",\"authors\":\"M. Hamdan, T. Alderson\",\"doi\":\"10.37394/232020.2022.2.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taylor and Maclaurin series, and polynomial approximations of the Standard Nield-Kuznetsov function of the second kind are obtained in this work. Convergence and error criteria are developed. The obtained series represent alternatives to existing asymptotic and ascending series approximations of this integral function, and are expected to provide an efficient method of computation.\",\"PeriodicalId\":93382,\"journal\":{\"name\":\"The international journal of evidence & proof\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The international journal of evidence & proof\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232020.2022.2.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of evidence & proof","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232020.2022.2.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

得到了泰勒级数和麦克劳林级数,以及第二类标准涅尔德-库兹涅佐夫函数的多项式近似。给出了收敛准则和误差准则。所得到的级数表示该积分函数的现有渐近和升序逼近的替代方法,并期望提供一种有效的计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Taylor Series Representation of the Nield-Kuznetsov Function of the Second Kind
Taylor and Maclaurin series, and polynomial approximations of the Standard Nield-Kuznetsov function of the second kind are obtained in this work. Convergence and error criteria are developed. The obtained series represent alternatives to existing asymptotic and ascending series approximations of this integral function, and are expected to provide an efficient method of computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信