{"title":"使用上下文模型进行查询预测,用于填充个人链接数据缓存","authors":"O. Hartig, T. Heath","doi":"10.1145/2309996.2310056","DOIUrl":null,"url":null,"abstract":"The emergence of a Web of Linked Data [2] enables new forms of application that require expressive query access, for which mature, Web-scale information retrieval techniques may not be suited. Rather than attempting to deliver expressive query capabilities at Web-scale, we propose the use of smaller, pre-populated data caches whose contents are personalized to the needs of an individual user. Such caches can act as personal data stores supporting a range of different applications. Furthermore, we discuss a user evaluation which demonstrates that our approach can accurately predict queries and their execution probability, thereby optimizing the cache population process. In this paper we formally introduce a strategy for predicting queries that can then be used to inform an a priori population of a personal cache of Linked Data harvested from Web. Based on a comprehensive user evaluation we demonstrate that our approach can accurately predict queries and their execution probability, thereby optimizing the cache population process.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"203 1","pages":"325-326"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Query prediction with context models for populating personal linked data caches\",\"authors\":\"O. Hartig, T. Heath\",\"doi\":\"10.1145/2309996.2310056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of a Web of Linked Data [2] enables new forms of application that require expressive query access, for which mature, Web-scale information retrieval techniques may not be suited. Rather than attempting to deliver expressive query capabilities at Web-scale, we propose the use of smaller, pre-populated data caches whose contents are personalized to the needs of an individual user. Such caches can act as personal data stores supporting a range of different applications. Furthermore, we discuss a user evaluation which demonstrates that our approach can accurately predict queries and their execution probability, thereby optimizing the cache population process. In this paper we formally introduce a strategy for predicting queries that can then be used to inform an a priori population of a personal cache of Linked Data harvested from Web. Based on a comprehensive user evaluation we demonstrate that our approach can accurately predict queries and their execution probability, thereby optimizing the cache population process.\",\"PeriodicalId\":91270,\"journal\":{\"name\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"volume\":\"203 1\",\"pages\":\"325-326\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2309996.2310056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2309996.2310056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Query prediction with context models for populating personal linked data caches
The emergence of a Web of Linked Data [2] enables new forms of application that require expressive query access, for which mature, Web-scale information retrieval techniques may not be suited. Rather than attempting to deliver expressive query capabilities at Web-scale, we propose the use of smaller, pre-populated data caches whose contents are personalized to the needs of an individual user. Such caches can act as personal data stores supporting a range of different applications. Furthermore, we discuss a user evaluation which demonstrates that our approach can accurately predict queries and their execution probability, thereby optimizing the cache population process. In this paper we formally introduce a strategy for predicting queries that can then be used to inform an a priori population of a personal cache of Linked Data harvested from Web. Based on a comprehensive user evaluation we demonstrate that our approach can accurately predict queries and their execution probability, thereby optimizing the cache population process.