多层建筑在气动载荷作用下挠度极限准则的改进

M. Nura
{"title":"多层建筑在气动载荷作用下挠度极限准则的改进","authors":"M. Nura","doi":"10.9790/1684-1404010109","DOIUrl":null,"url":null,"abstract":"In recent times, there have been rapid changes in the Architectural design of multi-story buildings tending towards slenderer structures due purposely to space utilization. These changes are not without some inherent challenges on the serviceability requirements of these buildings; of major concern are deflection, oscillation, and excessive vibration developed by the action of wind on the structural members. This study carried out an evaluation of shear wall and frame network subjected to aerodynamic wind load on a 60m, 20 storeys regular building model for aerodynamic resistance of multi-story building with a view to having further improvement on the serviceability criteria. Wind load assessment was carried out in accordance with recommendations of Euro code using critical wind speed of Maiduguri (47m/s) as primary data. Analysis of the structural system was carried out by using approximate rapid manual method and standard software package. An improved equation was developed for deflection from the result of the analysis which satisfies the limiting criteria of the code. Results obtain from the improved equation when compared with the existing limiting criteria shows more flexural rigidity up to about 95% of the height of the building. This means that the improved equation will provide less deflection than the existing method up to 95% of the building, thereby providing more comfort to the occupants of the buildings.","PeriodicalId":14565,"journal":{"name":"IOSR Journal of Mechanical and Civil Engineering","volume":"140 1","pages":"01-09"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Limiting Criteria for Deflection in Multi-Story Buildings Subjected to Aerodynamic Load\",\"authors\":\"M. Nura\",\"doi\":\"10.9790/1684-1404010109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent times, there have been rapid changes in the Architectural design of multi-story buildings tending towards slenderer structures due purposely to space utilization. These changes are not without some inherent challenges on the serviceability requirements of these buildings; of major concern are deflection, oscillation, and excessive vibration developed by the action of wind on the structural members. This study carried out an evaluation of shear wall and frame network subjected to aerodynamic wind load on a 60m, 20 storeys regular building model for aerodynamic resistance of multi-story building with a view to having further improvement on the serviceability criteria. Wind load assessment was carried out in accordance with recommendations of Euro code using critical wind speed of Maiduguri (47m/s) as primary data. Analysis of the structural system was carried out by using approximate rapid manual method and standard software package. An improved equation was developed for deflection from the result of the analysis which satisfies the limiting criteria of the code. Results obtain from the improved equation when compared with the existing limiting criteria shows more flexural rigidity up to about 95% of the height of the building. This means that the improved equation will provide less deflection than the existing method up to 95% of the building, thereby providing more comfort to the occupants of the buildings.\",\"PeriodicalId\":14565,\"journal\":{\"name\":\"IOSR Journal of Mechanical and Civil Engineering\",\"volume\":\"140 1\",\"pages\":\"01-09\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOSR Journal of Mechanical and Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9790/1684-1404010109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOSR Journal of Mechanical and Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/1684-1404010109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于空间的利用,多层建筑的建筑设计有了迅速的变化,趋向于细长的结构。这些变化对这些建筑物的适用性要求并非没有一些固有的挑战;主要关注的是挠曲,振荡和过度振动由风对结构构件的作用。本研究在一个60m、20层的常规建筑模型上,对剪力墙和框架网在气动风荷载作用下的阻力进行了评估,以期进一步完善其使用标准。按照欧洲规范建议,以迈杜古里临界风速(47m/s)为主要数据进行风荷载评估。采用近似快速人工方法和标准软件包对结构体系进行了分析。根据分析结果建立了一个改进的挠度方程,该方程满足规范的极限准则。与现有的极限准则相比,改进方程的结果表明,在建筑物高度的95%左右,抗弯刚度更高。这意味着改进后的方程将比现有方法提供更少的挠度,达到建筑物的95%,从而为建筑物的居住者提供更多的舒适度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Limiting Criteria for Deflection in Multi-Story Buildings Subjected to Aerodynamic Load
In recent times, there have been rapid changes in the Architectural design of multi-story buildings tending towards slenderer structures due purposely to space utilization. These changes are not without some inherent challenges on the serviceability requirements of these buildings; of major concern are deflection, oscillation, and excessive vibration developed by the action of wind on the structural members. This study carried out an evaluation of shear wall and frame network subjected to aerodynamic wind load on a 60m, 20 storeys regular building model for aerodynamic resistance of multi-story building with a view to having further improvement on the serviceability criteria. Wind load assessment was carried out in accordance with recommendations of Euro code using critical wind speed of Maiduguri (47m/s) as primary data. Analysis of the structural system was carried out by using approximate rapid manual method and standard software package. An improved equation was developed for deflection from the result of the analysis which satisfies the limiting criteria of the code. Results obtain from the improved equation when compared with the existing limiting criteria shows more flexural rigidity up to about 95% of the height of the building. This means that the improved equation will provide less deflection than the existing method up to 95% of the building, thereby providing more comfort to the occupants of the buildings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信