自动驾驶环境下激光雷达数据的增强时态数据组织

Michael Kusenbach, T. Luettel, H. Wuensche
{"title":"自动驾驶环境下激光雷达数据的增强时态数据组织","authors":"Michael Kusenbach, T. Luettel, H. Wuensche","doi":"10.1109/ITSC.2019.8917283","DOIUrl":null,"url":null,"abstract":"One of the most important tasks for autonomous cars is the perception of the environment. In particular, the detection and tracking of objects is vital for further applications. We present a new real-time method to organize point cloud data provided by a LiDAR sensor. The main contribution of this method is the linking of 3D points from different time frames. With this connection, it is possible to traverse through the data over time. In addition, an efficient 2D data organization allows fast access to neighboring information of the 3D data. This makes it very suitable for tasks like model creation and clustering. Based on the obtained spatial and temporal neighboring information, tasks such as object detection, tracking and prediction can be solved directly.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"4 1","pages":"2701-2706"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhanced Temporal Data Organization for LiDAR Data in Autonomous Driving Environments\",\"authors\":\"Michael Kusenbach, T. Luettel, H. Wuensche\",\"doi\":\"10.1109/ITSC.2019.8917283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important tasks for autonomous cars is the perception of the environment. In particular, the detection and tracking of objects is vital for further applications. We present a new real-time method to organize point cloud data provided by a LiDAR sensor. The main contribution of this method is the linking of 3D points from different time frames. With this connection, it is possible to traverse through the data over time. In addition, an efficient 2D data organization allows fast access to neighboring information of the 3D data. This makes it very suitable for tasks like model creation and clustering. Based on the obtained spatial and temporal neighboring information, tasks such as object detection, tracking and prediction can be solved directly.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"4 1\",\"pages\":\"2701-2706\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自动驾驶汽车最重要的任务之一是对环境的感知。特别是,物体的检测和跟踪对于进一步的应用至关重要。我们提出了一种新的实时方法来组织由激光雷达传感器提供的点云数据。该方法的主要贡献是连接来自不同时间框架的3D点。通过这种连接,可以随时间遍历数据。此外,有效的二维数据组织可以快速访问三维数据的相邻信息。这使得它非常适合模型创建和集群等任务。基于获取的时空相邻信息,可以直接解决目标检测、跟踪和预测等任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Temporal Data Organization for LiDAR Data in Autonomous Driving Environments
One of the most important tasks for autonomous cars is the perception of the environment. In particular, the detection and tracking of objects is vital for further applications. We present a new real-time method to organize point cloud data provided by a LiDAR sensor. The main contribution of this method is the linking of 3D points from different time frames. With this connection, it is possible to traverse through the data over time. In addition, an efficient 2D data organization allows fast access to neighboring information of the 3D data. This makes it very suitable for tasks like model creation and clustering. Based on the obtained spatial and temporal neighboring information, tasks such as object detection, tracking and prediction can be solved directly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信