静态图像中人体属性和动作识别的扩展部件模型

Gaurav Sharma, F. Jurie, C. Schmid
{"title":"静态图像中人体属性和动作识别的扩展部件模型","authors":"Gaurav Sharma, F. Jurie, C. Schmid","doi":"10.1109/CVPR.2013.90","DOIUrl":null,"url":null,"abstract":"We propose a new model for recognizing human attributes (e.g. wearing a suit, sitting, short hair) and actions (e.g. running, riding a horse) in still images. The proposed model relies on a collection of part templates which are learnt discriminatively to explain specific scale-space locations in the images (in human centric coordinates). It avoids the limitations of highly structured models, which consist of a few (i.e. a mixture of) 'average' templates. To learn our model, we propose an algorithm which automatically mines out parts and learns corresponding discriminative templates with their respective locations from a large number of candidate parts. We validate the method on recent challenging datasets: (i) Willow 7 actions [7], (ii) 27 Human Attributes (HAT) [25], and (iii) Stanford 40 actions [37]. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"18 1","pages":"652-659"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Expanded Parts Model for Human Attribute and Action Recognition in Still Images\",\"authors\":\"Gaurav Sharma, F. Jurie, C. Schmid\",\"doi\":\"10.1109/CVPR.2013.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new model for recognizing human attributes (e.g. wearing a suit, sitting, short hair) and actions (e.g. running, riding a horse) in still images. The proposed model relies on a collection of part templates which are learnt discriminatively to explain specific scale-space locations in the images (in human centric coordinates). It avoids the limitations of highly structured models, which consist of a few (i.e. a mixture of) 'average' templates. To learn our model, we propose an algorithm which automatically mines out parts and learns corresponding discriminative templates with their respective locations from a large number of candidate parts. We validate the method on recent challenging datasets: (i) Willow 7 actions [7], (ii) 27 Human Attributes (HAT) [25], and (iii) Stanford 40 actions [37]. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"18 1\",\"pages\":\"652-659\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

我们提出了一个新的模型来识别静止图像中的人类属性(如穿西装、坐着、短发)和动作(如跑步、骑马)。提出的模型依赖于部分模板的集合,这些模板被区分地学习来解释图像中特定的尺度空间位置(在以人为中心的坐标中)。它避免了高度结构化模型的限制,这些模型由几个(即混合)组成。“平均”模板。为了学习我们的模型,我们提出了一种自动挖掘零件的算法,并从大量的候选零件中学习相应的具有各自位置的判别模板。我们在最近的具有挑战性的数据集上验证了该方法:(i) Willow 7个动作[7],(ii) 27个人类属性(HAT)[25],以及(iii) Stanford 40个动作[37]。我们在三个数据集上获得了令人信服的定性和最先进的定量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expanded Parts Model for Human Attribute and Action Recognition in Still Images
We propose a new model for recognizing human attributes (e.g. wearing a suit, sitting, short hair) and actions (e.g. running, riding a horse) in still images. The proposed model relies on a collection of part templates which are learnt discriminatively to explain specific scale-space locations in the images (in human centric coordinates). It avoids the limitations of highly structured models, which consist of a few (i.e. a mixture of) 'average' templates. To learn our model, we propose an algorithm which automatically mines out parts and learns corresponding discriminative templates with their respective locations from a large number of candidate parts. We validate the method on recent challenging datasets: (i) Willow 7 actions [7], (ii) 27 Human Attributes (HAT) [25], and (iii) Stanford 40 actions [37]. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信