Angstrom-Prescott和Hargreaves-Samani系数对西非气候强迫和太阳能光伏技术选择的影响

M. Agbor, S. Udo, Igwe O. Ewona, S. C. Nwokolo, J. Ogbulezie, S. Amadi, Utibe Billy
{"title":"Angstrom-Prescott和Hargreaves-Samani系数对西非气候强迫和太阳能光伏技术选择的影响","authors":"M. Agbor, S. Udo, Igwe O. Ewona, S. C. Nwokolo, J. Ogbulezie, S. Amadi, Utibe Billy","doi":"10.17737/tre.2023.9.1.00150","DOIUrl":null,"url":null,"abstract":"We evaluated and compared the performance of simulated Angström-Prescott (AP) and Hargreaves-Samani (HS) models on monthly and annual timescales using generalized datasets covering the entire West African region. The fitted AP model yielded more efficient parameters of a = 0.366 and b = 0.459, whereas the HS model produced a 0.216 coefficient based on an annual timescale, which is more suitable in the region compared to coefficients recommended by the Food and Agriculture Organization (FAO) (a = 0.25 and b = 0.5) and HS (0.17), respectively. Employing the FAO and HS recommended coefficients will introduce a relative percentage error (RPE) of 18.388% and 27.19% compared to the RPEs of 0.0014% and 0.1036% obtained in this study, respectively. When considering time and resource availability in the absence of ground-measured datasets, the coefficients obtained in this study can be used for predicting global solar radiation within the region. According to the AP and HS coefficients, the polycrystalline module (p-Si) is more reliable than the monocrystalline module (m-Si) because the p-Si module has a higher tendency to withstand the high temperatures projected to affect the region due to its higher intrinsic properties based on the AP and HS coefficients assessment in the region.","PeriodicalId":23305,"journal":{"name":"Trends in Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects of Angstrom-Prescott and Hargreaves-Samani Coefficients on Climate Forcing and Solar PV Technology Selection in West Africa\",\"authors\":\"M. Agbor, S. Udo, Igwe O. Ewona, S. C. Nwokolo, J. Ogbulezie, S. Amadi, Utibe Billy\",\"doi\":\"10.17737/tre.2023.9.1.00150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluated and compared the performance of simulated Angström-Prescott (AP) and Hargreaves-Samani (HS) models on monthly and annual timescales using generalized datasets covering the entire West African region. The fitted AP model yielded more efficient parameters of a = 0.366 and b = 0.459, whereas the HS model produced a 0.216 coefficient based on an annual timescale, which is more suitable in the region compared to coefficients recommended by the Food and Agriculture Organization (FAO) (a = 0.25 and b = 0.5) and HS (0.17), respectively. Employing the FAO and HS recommended coefficients will introduce a relative percentage error (RPE) of 18.388% and 27.19% compared to the RPEs of 0.0014% and 0.1036% obtained in this study, respectively. When considering time and resource availability in the absence of ground-measured datasets, the coefficients obtained in this study can be used for predicting global solar radiation within the region. According to the AP and HS coefficients, the polycrystalline module (p-Si) is more reliable than the monocrystalline module (m-Si) because the p-Si module has a higher tendency to withstand the high temperatures projected to affect the region due to its higher intrinsic properties based on the AP and HS coefficients assessment in the region.\",\"PeriodicalId\":23305,\"journal\":{\"name\":\"Trends in Renewable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17737/tre.2023.9.1.00150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17737/tre.2023.9.1.00150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们使用覆盖整个西非地区的广义数据集,评估并比较了模拟Angström-Prescott (AP)和Hargreaves-Samani (HS)模型在月和年时间尺度上的性能。拟合的AP模型得到的有效参数为a = 0.366和b = 0.459,而HS模型得到的基于年时间尺度的系数为0.216,与粮农组织(FAO)推荐的系数(a = 0.25和b = 0.5)和HS推荐的系数(0.17)相比,前者更适合该地区。采用FAO和HS推荐系数将引入18.388%和27.19%的相对百分比误差(RPE),而本研究获得的相对百分比误差分别为0.0014%和0.1036%。在没有地面测量数据集的情况下,考虑时间和资源的可用性,本研究获得的系数可用于预测该区域内的太阳总辐射。根据AP和HS系数,多晶组件(p-Si)比单晶组件(m-Si)更可靠,因为基于AP和HS系数评估,p-Si组件具有更高的本征特性,因此具有更高的耐高温倾向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Angstrom-Prescott and Hargreaves-Samani Coefficients on Climate Forcing and Solar PV Technology Selection in West Africa
We evaluated and compared the performance of simulated Angström-Prescott (AP) and Hargreaves-Samani (HS) models on monthly and annual timescales using generalized datasets covering the entire West African region. The fitted AP model yielded more efficient parameters of a = 0.366 and b = 0.459, whereas the HS model produced a 0.216 coefficient based on an annual timescale, which is more suitable in the region compared to coefficients recommended by the Food and Agriculture Organization (FAO) (a = 0.25 and b = 0.5) and HS (0.17), respectively. Employing the FAO and HS recommended coefficients will introduce a relative percentage error (RPE) of 18.388% and 27.19% compared to the RPEs of 0.0014% and 0.1036% obtained in this study, respectively. When considering time and resource availability in the absence of ground-measured datasets, the coefficients obtained in this study can be used for predicting global solar radiation within the region. According to the AP and HS coefficients, the polycrystalline module (p-Si) is more reliable than the monocrystalline module (m-Si) because the p-Si module has a higher tendency to withstand the high temperatures projected to affect the region due to its higher intrinsic properties based on the AP and HS coefficients assessment in the region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信