具有退化阻尼项的粘弹性耦合波动方程解的局部存在性和爆破性

IF 0.7 Q4 MECHANICS
E. Pişkin, F. Ekinci, K. Zennir
{"title":"具有退化阻尼项的粘弹性耦合波动方程解的局部存在性和爆破性","authors":"E. Pişkin, F. Ekinci, K. Zennir","doi":"10.2298/tam200428008p","DOIUrl":null,"url":null,"abstract":". In this paper, we investigate a nonlinear system of viscoelastic equations with degenerate damping and source terms in a bounded domain. Under appropriate assumptions on the parameters, degenerate damping terms and the relaxation functions 𝜛 𝑖 , ( 𝑖 = 1 , 2), we prove local existence and unique- ness of the solution by using the Faedo–Galerkin method with a new scenario. Then, we prove the blow-up of weak solutions to problem (1.1). This improves earlier results in the literature [ 6 , 23 , 25 ].","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"115 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Local existence and blow-up of solutions for coupled viscoelastic wave equations with degenerate damping terms\",\"authors\":\"E. Pişkin, F. Ekinci, K. Zennir\",\"doi\":\"10.2298/tam200428008p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we investigate a nonlinear system of viscoelastic equations with degenerate damping and source terms in a bounded domain. Under appropriate assumptions on the parameters, degenerate damping terms and the relaxation functions 𝜛 𝑖 , ( 𝑖 = 1 , 2), we prove local existence and unique- ness of the solution by using the Faedo–Galerkin method with a new scenario. Then, we prove the blow-up of weak solutions to problem (1.1). This improves earlier results in the literature [ 6 , 23 , 25 ].\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tam200428008p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam200428008p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 7

摘要

. 本文研究了一类具有退化阻尼和源项的非线性粘弹性方程组。在适当的参数、退化阻尼项和松弛函数𝜛,(至极),(至极= 1,2)的假设下,利用Faedo-Galerkin方法在新的情形下证明了解的局部存在性和唯一性。然后,我们证明了问题(1.1)的弱解的爆破性。这改进了先前文献中的结果[6,23,25]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local existence and blow-up of solutions for coupled viscoelastic wave equations with degenerate damping terms
. In this paper, we investigate a nonlinear system of viscoelastic equations with degenerate damping and source terms in a bounded domain. Under appropriate assumptions on the parameters, degenerate damping terms and the relaxation functions 𝜛 𝑖 , ( 𝑖 = 1 , 2), we prove local existence and unique- ness of the solution by using the Faedo–Galerkin method with a new scenario. Then, we prove the blow-up of weak solutions to problem (1.1). This improves earlier results in the literature [ 6 , 23 , 25 ].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信