{"title":"纳米结构“黑硅”太阳能电池正面和背面的性能优化技术","authors":"Wenqi Duan, Bingtao Gao, K. E. Haque, F. Toor","doi":"10.1109/PVSC.2018.8547924","DOIUrl":null,"url":null,"abstract":"In this work we present techniques to improve the front and back surface performance of nanostructured black silicon (bSi) solar cells. Proximity doping using ammonium dihydrogen phosphate (ADP) is used to reduce the physical impact on the nanostructure of bSi during fabrication. Potassium hydroxide (KOH) is used to etch off the highly doped region of the front emitter. Forming gas anneal (FGA) is employed to reduce the series resistance and enhance surface passivation, improving cell efficiency by over 31%. The back-surface-field (BSF) formed by sputtered aluminum (A1) is optimized to reduce backside recombination rate, improving external quantum efficiency (EQE) by an average of 8.31% in the long wavelength region.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"13 1","pages":"3080-3085"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance optimization techniques for the front and back of nanostructured ‘black silicon’ solar cells\",\"authors\":\"Wenqi Duan, Bingtao Gao, K. E. Haque, F. Toor\",\"doi\":\"10.1109/PVSC.2018.8547924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present techniques to improve the front and back surface performance of nanostructured black silicon (bSi) solar cells. Proximity doping using ammonium dihydrogen phosphate (ADP) is used to reduce the physical impact on the nanostructure of bSi during fabrication. Potassium hydroxide (KOH) is used to etch off the highly doped region of the front emitter. Forming gas anneal (FGA) is employed to reduce the series resistance and enhance surface passivation, improving cell efficiency by over 31%. The back-surface-field (BSF) formed by sputtered aluminum (A1) is optimized to reduce backside recombination rate, improving external quantum efficiency (EQE) by an average of 8.31% in the long wavelength region.\",\"PeriodicalId\":6558,\"journal\":{\"name\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"volume\":\"13 1\",\"pages\":\"3080-3085\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2018.8547924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8547924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance optimization techniques for the front and back of nanostructured ‘black silicon’ solar cells
In this work we present techniques to improve the front and back surface performance of nanostructured black silicon (bSi) solar cells. Proximity doping using ammonium dihydrogen phosphate (ADP) is used to reduce the physical impact on the nanostructure of bSi during fabrication. Potassium hydroxide (KOH) is used to etch off the highly doped region of the front emitter. Forming gas anneal (FGA) is employed to reduce the series resistance and enhance surface passivation, improving cell efficiency by over 31%. The back-surface-field (BSF) formed by sputtered aluminum (A1) is optimized to reduce backside recombination rate, improving external quantum efficiency (EQE) by an average of 8.31% in the long wavelength region.