{"title":"学习陈述性行动模型的综合框架","authors":"Diego Aineto, Sergio Jiménez, E. Onaindía","doi":"10.1613/jair.1.13073","DOIUrl":null,"url":null,"abstract":"A declarative action model is a compact representation of the state transitions of dynamic systems that generalizes over world objects. The specification of declarative action models is often a complex hand-crafted task. In this paper we formulate declarative action models via state constraints, and present the learning of such models as a combinatorial search. The comprehensive framework presented here allows us to connect the learning of declarative action models to well-known problem solving tasks. In addition, our framework allows us to characterize the existing work in the literature according to four dimensions: (1) the target action models, in terms of the state transitions they define; (2) the available learning examples; (3) the functions used to guide the learning process, and to evaluate the quality of the learned action models; (4) the learning algorithm. Last, the paper lists relevant successful applications of the learning of declarative actions models and discusses some open challenges with the aim of encouraging future research work.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"22 1","pages":"1091-1123"},"PeriodicalIF":4.5000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Comprehensive Framework for Learning Declarative Action Models\",\"authors\":\"Diego Aineto, Sergio Jiménez, E. Onaindía\",\"doi\":\"10.1613/jair.1.13073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A declarative action model is a compact representation of the state transitions of dynamic systems that generalizes over world objects. The specification of declarative action models is often a complex hand-crafted task. In this paper we formulate declarative action models via state constraints, and present the learning of such models as a combinatorial search. The comprehensive framework presented here allows us to connect the learning of declarative action models to well-known problem solving tasks. In addition, our framework allows us to characterize the existing work in the literature according to four dimensions: (1) the target action models, in terms of the state transitions they define; (2) the available learning examples; (3) the functions used to guide the learning process, and to evaluate the quality of the learned action models; (4) the learning algorithm. Last, the paper lists relevant successful applications of the learning of declarative actions models and discusses some open challenges with the aim of encouraging future research work.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":\"22 1\",\"pages\":\"1091-1123\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.13073\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.13073","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Comprehensive Framework for Learning Declarative Action Models
A declarative action model is a compact representation of the state transitions of dynamic systems that generalizes over world objects. The specification of declarative action models is often a complex hand-crafted task. In this paper we formulate declarative action models via state constraints, and present the learning of such models as a combinatorial search. The comprehensive framework presented here allows us to connect the learning of declarative action models to well-known problem solving tasks. In addition, our framework allows us to characterize the existing work in the literature according to four dimensions: (1) the target action models, in terms of the state transitions they define; (2) the available learning examples; (3) the functions used to guide the learning process, and to evaluate the quality of the learned action models; (4) the learning algorithm. Last, the paper lists relevant successful applications of the learning of declarative actions models and discusses some open challenges with the aim of encouraging future research work.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.