BitShred:功能哈希恶意软件,可扩展分类和语义分析

Jiyong Jang, David Brumley, Shobha Venkataraman
{"title":"BitShred:功能哈希恶意软件,可扩展分类和语义分析","authors":"Jiyong Jang, David Brumley, Shobha Venkataraman","doi":"10.1145/2046707.2046742","DOIUrl":null,"url":null,"abstract":"The sheer volume of new malware found each day is growing at an exponential pace. This growth has created a need for automatic malware triage techniques that determine what malware is similar, what malware is unique, and why. In this paper, we present BitShred, a system for large-scale malware similarity analysis and clustering, and for automatically uncovering semantic inter- and intra-family relationships within clusters. The key idea behind BitShred is using feature hashing to dramatically reduce the high-dimensional feature spaces that are common in malware analysis. Feature hashing also allows us to mine correlated features between malware families and samples using co-clustering techniques. Our evaluation shows that BitShred speeds up typical malware triage tasks by up to 2,365x and uses up to 82x less memory on a single CPU, all with comparable accuracy to previous approaches. We also develop a parallelized version of BitShred, and demonstrate scalability within the Hadoop framework.","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":"40 1","pages":"309-320"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"278","resultStr":"{\"title\":\"BitShred: feature hashing malware for scalable triage and semantic analysis\",\"authors\":\"Jiyong Jang, David Brumley, Shobha Venkataraman\",\"doi\":\"10.1145/2046707.2046742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sheer volume of new malware found each day is growing at an exponential pace. This growth has created a need for automatic malware triage techniques that determine what malware is similar, what malware is unique, and why. In this paper, we present BitShred, a system for large-scale malware similarity analysis and clustering, and for automatically uncovering semantic inter- and intra-family relationships within clusters. The key idea behind BitShred is using feature hashing to dramatically reduce the high-dimensional feature spaces that are common in malware analysis. Feature hashing also allows us to mine correlated features between malware families and samples using co-clustering techniques. Our evaluation shows that BitShred speeds up typical malware triage tasks by up to 2,365x and uses up to 82x less memory on a single CPU, all with comparable accuracy to previous approaches. We also develop a parallelized version of BitShred, and demonstrate scalability within the Hadoop framework.\",\"PeriodicalId\":72687,\"journal\":{\"name\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"volume\":\"40 1\",\"pages\":\"309-320\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"278\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2046707.2046742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046707.2046742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 278

摘要

每天发现的新恶意软件的数量正以指数级的速度增长。这种增长产生了对自动恶意软件分类技术的需求,以确定哪些恶意软件是相似的,哪些恶意软件是独特的,以及为什么。在本文中,我们提出了BitShred,一个用于大规模恶意软件相似性分析和聚类的系统,并用于自动发现集群内的语义家族间和家族内关系。BitShred背后的关键思想是使用特征哈希来显著减少恶意软件分析中常见的高维特征空间。特征哈希还允许我们使用共聚类技术挖掘恶意软件家族和样本之间的相关特征。我们的评估表明,BitShred将典型的恶意软件分类任务速度提高了2365倍,在单个CPU上使用的内存减少了82倍,所有这些都与以前的方法具有相当的准确性。我们还开发了并行版本的BitShred,并演示了在Hadoop框架内的可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BitShred: feature hashing malware for scalable triage and semantic analysis
The sheer volume of new malware found each day is growing at an exponential pace. This growth has created a need for automatic malware triage techniques that determine what malware is similar, what malware is unique, and why. In this paper, we present BitShred, a system for large-scale malware similarity analysis and clustering, and for automatically uncovering semantic inter- and intra-family relationships within clusters. The key idea behind BitShred is using feature hashing to dramatically reduce the high-dimensional feature spaces that are common in malware analysis. Feature hashing also allows us to mine correlated features between malware families and samples using co-clustering techniques. Our evaluation shows that BitShred speeds up typical malware triage tasks by up to 2,365x and uses up to 82x less memory on a single CPU, all with comparable accuracy to previous approaches. We also develop a parallelized version of BitShred, and demonstrate scalability within the Hadoop framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信