面部表情分析对三维头部姿态运动具有鲁棒性

A. Valle, J. Dugelay
{"title":"面部表情分析对三维头部姿态运动具有鲁棒性","authors":"A. Valle, J. Dugelay","doi":"10.1109/ICME.2002.1035933","DOIUrl":null,"url":null,"abstract":"Most face expression algorithms assume a front or 'near-to-front' head position. This assumption becomes an important limitation when studying input from real systems. We present a new approach to robustly determine face expressions independently of the head pose. Our analysis-synthesis cooperation, possible thanks to the use of a highly realistic 3D head model and the application of Kalman filtering to predict the user pose, permits us to correctly track the interesting face features. Adapting 'near-to-front' analysis techniques based on the predicted pose enables us to use such algorithms with moving speakers.","PeriodicalId":90694,"journal":{"name":"Proceedings. IEEE International Conference on Multimedia and Expo","volume":"39 1","pages":"921-924 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Facial expression analysis robust to 3D head pose motion\",\"authors\":\"A. Valle, J. Dugelay\",\"doi\":\"10.1109/ICME.2002.1035933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most face expression algorithms assume a front or 'near-to-front' head position. This assumption becomes an important limitation when studying input from real systems. We present a new approach to robustly determine face expressions independently of the head pose. Our analysis-synthesis cooperation, possible thanks to the use of a highly realistic 3D head model and the application of Kalman filtering to predict the user pose, permits us to correctly track the interesting face features. Adapting 'near-to-front' analysis techniques based on the predicted pose enables us to use such algorithms with moving speakers.\",\"PeriodicalId\":90694,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Multimedia and Expo\",\"volume\":\"39 1\",\"pages\":\"921-924 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2002.1035933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2002.1035933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

大多数面部表情算法假设一个正面或“接近正面”的头部位置。当研究来自真实系统的输入时,这种假设成为一个重要的限制。我们提出了一种独立于头部姿态的鲁棒确定面部表情的新方法。我们的分析合成合作,可能要归功于使用高度逼真的3D头部模型和应用卡尔曼滤波来预测用户的姿势,使我们能够正确地跟踪有趣的面部特征。基于预测姿势的“近前方”分析技术使我们能够将这种算法用于移动的扬声器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial expression analysis robust to 3D head pose motion
Most face expression algorithms assume a front or 'near-to-front' head position. This assumption becomes an important limitation when studying input from real systems. We present a new approach to robustly determine face expressions independently of the head pose. Our analysis-synthesis cooperation, possible thanks to the use of a highly realistic 3D head model and the application of Kalman filtering to predict the user pose, permits us to correctly track the interesting face features. Adapting 'near-to-front' analysis techniques based on the predicted pose enables us to use such algorithms with moving speakers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信