{"title":"可渗透介质中扩散MRI的二阶渐近模型","authors":"Marwa Kchaou, Jing-Rebecca Li","doi":"10.1051/m2an/2023043","DOIUrl":null,"url":null,"abstract":"Starting from a reference partial differential equation model of the complex transverse water proton magnetization in a voxel due to diffusion-encoding magnetic field gradient pulses, one can use periodic homogenization theory to establish macroscopic models. A previous work introduced an asymptotic model that accounted for permeable interfaces in the imaging medium. In this paper we formulate a higher order asymptotic model to treat higher values of permeability. We explicitly solved this new asymptotic model to obtain a system of ordinary differential equations that can model the diffusion MRI signal and we present numerical results showing the improved accuracy of the new model in the regime of higher permeability.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A second order asymptotic model for diffusion MRI in permeable media\",\"authors\":\"Marwa Kchaou, Jing-Rebecca Li\",\"doi\":\"10.1051/m2an/2023043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from a reference partial differential equation model of the complex transverse water proton magnetization in a voxel due to diffusion-encoding magnetic field gradient pulses, one can use periodic homogenization theory to establish macroscopic models. A previous work introduced an asymptotic model that accounted for permeable interfaces in the imaging medium. In this paper we formulate a higher order asymptotic model to treat higher values of permeability. We explicitly solved this new asymptotic model to obtain a system of ordinary differential equations that can model the diffusion MRI signal and we present numerical results showing the improved accuracy of the new model in the regime of higher permeability.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2023043\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2023043","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
A second order asymptotic model for diffusion MRI in permeable media
Starting from a reference partial differential equation model of the complex transverse water proton magnetization in a voxel due to diffusion-encoding magnetic field gradient pulses, one can use periodic homogenization theory to establish macroscopic models. A previous work introduced an asymptotic model that accounted for permeable interfaces in the imaging medium. In this paper we formulate a higher order asymptotic model to treat higher values of permeability. We explicitly solved this new asymptotic model to obtain a system of ordinary differential equations that can model the diffusion MRI signal and we present numerical results showing the improved accuracy of the new model in the regime of higher permeability.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.