{"title":"参数协整与非参数协整之间的模型规范","authors":"Jiti Gao","doi":"10.2139/ssrn.2140996","DOIUrl":null,"url":null,"abstract":"This paper considers a general model specification between a parametric co-integrating model and a nonparametric co-integrating model in a multivariate regression model, which involves a univariate integrated time series regressor and a vector of stationary time series regressors. A new and simple test is proposed and the resulting asymptotic theory is established. The test statistic is constructed based on a natural distance function between a nonparametric estimate and a smoothed parametric counterpart. The asymptotic distribution of the test statistic under the parametric specification is proportional to that of a local-time random variable with a known distribution. In addition, the finite sample performance of the proposed test is evaluated through using both simulated and real data examples.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Model Specification between Parametric and Nonparametric Cointegration\",\"authors\":\"Jiti Gao\",\"doi\":\"10.2139/ssrn.2140996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a general model specification between a parametric co-integrating model and a nonparametric co-integrating model in a multivariate regression model, which involves a univariate integrated time series regressor and a vector of stationary time series regressors. A new and simple test is proposed and the resulting asymptotic theory is established. The test statistic is constructed based on a natural distance function between a nonparametric estimate and a smoothed parametric counterpart. The asymptotic distribution of the test statistic under the parametric specification is proportional to that of a local-time random variable with a known distribution. In addition, the finite sample performance of the proposed test is evaluated through using both simulated and real data examples.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2140996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2140996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model Specification between Parametric and Nonparametric Cointegration
This paper considers a general model specification between a parametric co-integrating model and a nonparametric co-integrating model in a multivariate regression model, which involves a univariate integrated time series regressor and a vector of stationary time series regressors. A new and simple test is proposed and the resulting asymptotic theory is established. The test statistic is constructed based on a natural distance function between a nonparametric estimate and a smoothed parametric counterpart. The asymptotic distribution of the test statistic under the parametric specification is proportional to that of a local-time random variable with a known distribution. In addition, the finite sample performance of the proposed test is evaluated through using both simulated and real data examples.