{"title":"多种群死亡率模型:贝叶斯分层方法","authors":"Jianjie Shi, Yanlin Shi, Pengjie Wang, Dan Zhu","doi":"10.1017/asb.2023.29","DOIUrl":null,"url":null,"abstract":"\n Modelling mortality co-movements for multiple populations has significant implications for mortality/longevity risk management. This paper assumes that multiple populations are heterogeneous sub-populations randomly drawn from a hypothetical super-population. Those heterogeneous sub-populations may exhibit various patterns of mortality dynamics across different age groups. We propose a hierarchical structure of these age patterns to ensure the model stability and use a Vector Error Correction Model (VECM) to fit the co-movements over time. Especially, a structural analysis based on the VECM is implemented to investigate potential interdependence among mortality dynamics of the examined populations. An efficient Bayesian Markov Chain Monte-Carlo method is also developed to estimate the unknown parameters to address the computational complexity. Our empirical application to the mortality data collected for the Group of Seven nations demonstrates the efficacy of our approach.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-population mortality modelling: a Bayesian hierarchical approach\",\"authors\":\"Jianjie Shi, Yanlin Shi, Pengjie Wang, Dan Zhu\",\"doi\":\"10.1017/asb.2023.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Modelling mortality co-movements for multiple populations has significant implications for mortality/longevity risk management. This paper assumes that multiple populations are heterogeneous sub-populations randomly drawn from a hypothetical super-population. Those heterogeneous sub-populations may exhibit various patterns of mortality dynamics across different age groups. We propose a hierarchical structure of these age patterns to ensure the model stability and use a Vector Error Correction Model (VECM) to fit the co-movements over time. Especially, a structural analysis based on the VECM is implemented to investigate potential interdependence among mortality dynamics of the examined populations. An efficient Bayesian Markov Chain Monte-Carlo method is also developed to estimate the unknown parameters to address the computational complexity. Our empirical application to the mortality data collected for the Group of Seven nations demonstrates the efficacy of our approach.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/asb.2023.29\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2023.29","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-population mortality modelling: a Bayesian hierarchical approach
Modelling mortality co-movements for multiple populations has significant implications for mortality/longevity risk management. This paper assumes that multiple populations are heterogeneous sub-populations randomly drawn from a hypothetical super-population. Those heterogeneous sub-populations may exhibit various patterns of mortality dynamics across different age groups. We propose a hierarchical structure of these age patterns to ensure the model stability and use a Vector Error Correction Model (VECM) to fit the co-movements over time. Especially, a structural analysis based on the VECM is implemented to investigate potential interdependence among mortality dynamics of the examined populations. An efficient Bayesian Markov Chain Monte-Carlo method is also developed to estimate the unknown parameters to address the computational complexity. Our empirical application to the mortality data collected for the Group of Seven nations demonstrates the efficacy of our approach.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.