Wei Yang, Wanli Ouyang, Hongsheng Li, Xiaogang Wang
{"title":"可变形零件混合的端到端学习与深度卷积神经网络人体姿态估计","authors":"Wei Yang, Wanli Ouyang, Hongsheng Li, Xiaogang Wang","doi":"10.1109/CVPR.2016.335","DOIUrl":null,"url":null,"abstract":"Recently, Deep Convolutional Neural Networks (DCNNs) have been applied to the task of human pose estimation, and have shown its potential of learning better feature representations and capturing contextual relationships. However, it is difficult to incorporate domain prior knowledge such as geometric relationships among body parts into DCNNs. In addition, training DCNN-based body part detectors without consideration of global body joint consistency introduces ambiguities, which increases the complexity of training. In this paper, we propose a novel end-to-end framework for human pose estimation that combines DCNNs with the expressive deformable mixture of parts. We explicitly incorporate domain prior knowledge into the framework, which greatly regularizes the learning process and enables the flexibility of our framework for loopy models or tree-structured models. The effectiveness of jointly learning a DCNN with a deformable mixture of parts model is evaluated through intensive experiments on several widely used benchmarks. The proposed approach significantly improves the performance compared with state-of-the-art approaches, especially on benchmarks with challenging articulations.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"75 1","pages":"3073-3082"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"233","resultStr":"{\"title\":\"End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation\",\"authors\":\"Wei Yang, Wanli Ouyang, Hongsheng Li, Xiaogang Wang\",\"doi\":\"10.1109/CVPR.2016.335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Deep Convolutional Neural Networks (DCNNs) have been applied to the task of human pose estimation, and have shown its potential of learning better feature representations and capturing contextual relationships. However, it is difficult to incorporate domain prior knowledge such as geometric relationships among body parts into DCNNs. In addition, training DCNN-based body part detectors without consideration of global body joint consistency introduces ambiguities, which increases the complexity of training. In this paper, we propose a novel end-to-end framework for human pose estimation that combines DCNNs with the expressive deformable mixture of parts. We explicitly incorporate domain prior knowledge into the framework, which greatly regularizes the learning process and enables the flexibility of our framework for loopy models or tree-structured models. The effectiveness of jointly learning a DCNN with a deformable mixture of parts model is evaluated through intensive experiments on several widely used benchmarks. The proposed approach significantly improves the performance compared with state-of-the-art approaches, especially on benchmarks with challenging articulations.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"75 1\",\"pages\":\"3073-3082\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"233\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation
Recently, Deep Convolutional Neural Networks (DCNNs) have been applied to the task of human pose estimation, and have shown its potential of learning better feature representations and capturing contextual relationships. However, it is difficult to incorporate domain prior knowledge such as geometric relationships among body parts into DCNNs. In addition, training DCNN-based body part detectors without consideration of global body joint consistency introduces ambiguities, which increases the complexity of training. In this paper, we propose a novel end-to-end framework for human pose estimation that combines DCNNs with the expressive deformable mixture of parts. We explicitly incorporate domain prior knowledge into the framework, which greatly regularizes the learning process and enables the flexibility of our framework for loopy models or tree-structured models. The effectiveness of jointly learning a DCNN with a deformable mixture of parts model is evaluated through intensive experiments on several widely used benchmarks. The proposed approach significantly improves the performance compared with state-of-the-art approaches, especially on benchmarks with challenging articulations.