{"title":"$H^p$空间的系数估计","authors":"Ole Fredrik Brevig, E. Saksman","doi":"10.1090/PROC/14995","DOIUrl":null,"url":null,"abstract":"Let $C(k,p)$ denote the smallest real number such that the estimate $|a_k|\\leq C(k,p)\\|f\\|_{H^p}$ holds for every $f(z)=\\sum_{n\\geq0}a_n z^n$ in the $H^p$ space of the unit disc. We compute $C(2,p)$ for $0<p<1$ and $C(3,2/3)$, and identify the functions attaining equality in the estimate.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"203 1","pages":"3911-3924"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coefficient estimates for $H^p$ spaces with $0\",\"authors\":\"Ole Fredrik Brevig, E. Saksman\",\"doi\":\"10.1090/PROC/14995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $C(k,p)$ denote the smallest real number such that the estimate $|a_k|\\\\leq C(k,p)\\\\|f\\\\|_{H^p}$ holds for every $f(z)=\\\\sum_{n\\\\geq0}a_n z^n$ in the $H^p$ space of the unit disc. We compute $C(2,p)$ for $0<p<1$ and $C(3,2/3)$, and identify the functions attaining equality in the estimate.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"203 1\",\"pages\":\"3911-3924\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/14995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/14995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $C(k,p)$ denote the smallest real number such that the estimate $|a_k|\leq C(k,p)\|f\|_{H^p}$ holds for every $f(z)=\sum_{n\geq0}a_n z^n$ in the $H^p$ space of the unit disc. We compute $C(2,p)$ for $0