H. Dorozinska, G. Dorozinsky, V. Maslov, N. Kachur
{"title":"利用表面等离子体共振技术测定uv胶粘剂的光学参数,控制聚合过程","authors":"H. Dorozinska, G. Dorozinsky, V. Maslov, N. Kachur","doi":"10.15406/MSEIJ.2019.03.00090","DOIUrl":null,"url":null,"abstract":"Ultraviolet adhesives are widely used in the manufacture of precision optical devices. It is known, that adding fillers to the glue reduces shrinkage after polymerization, reduces internal stresses, improves the reliability of the connection, and also allows you to control the optical properties of the connecting layer. By varying the amount and composition of the filler, we can change the refractive index of the compound, as well as improve the processability of the compound due to faster polymerization. The kinetics of polymerization studied on surface plasmon resonance device \"Plasmon\". We used UV-spectroscopy an fluorescence spectroscopy for investigation glue`s properties. Dependences of the reflection coefficient R on the angle of incidence of laser radiation onto the samples with non-polymerized and polymerized adhesives are measured. The kinetics of polymerization process was determinate. Measurements of the absorption coefficients inherent to the structures glass – adhesive – glass within the range 200…400 nm was performed. The spectra of fluorescence inherent to the structures glass – adhesive – glass within the range 400…700 nm are measured. The obtained results show that the SPR method is informative and can be applied for investigations and optimization of UV-adhesive composition. Introduction of organosilicon acrylates with high dispersion as impurities in these adhesives enables to increase the velocity of adhesive polymerization.","PeriodicalId":18241,"journal":{"name":"Material Science & Engineering International Journal","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The use surface plasmon resonance to determine the optical parameters of UV-adhesive and control polymerization process\",\"authors\":\"H. Dorozinska, G. Dorozinsky, V. Maslov, N. Kachur\",\"doi\":\"10.15406/MSEIJ.2019.03.00090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultraviolet adhesives are widely used in the manufacture of precision optical devices. It is known, that adding fillers to the glue reduces shrinkage after polymerization, reduces internal stresses, improves the reliability of the connection, and also allows you to control the optical properties of the connecting layer. By varying the amount and composition of the filler, we can change the refractive index of the compound, as well as improve the processability of the compound due to faster polymerization. The kinetics of polymerization studied on surface plasmon resonance device \\\"Plasmon\\\". We used UV-spectroscopy an fluorescence spectroscopy for investigation glue`s properties. Dependences of the reflection coefficient R on the angle of incidence of laser radiation onto the samples with non-polymerized and polymerized adhesives are measured. The kinetics of polymerization process was determinate. Measurements of the absorption coefficients inherent to the structures glass – adhesive – glass within the range 200…400 nm was performed. The spectra of fluorescence inherent to the structures glass – adhesive – glass within the range 400…700 nm are measured. The obtained results show that the SPR method is informative and can be applied for investigations and optimization of UV-adhesive composition. Introduction of organosilicon acrylates with high dispersion as impurities in these adhesives enables to increase the velocity of adhesive polymerization.\",\"PeriodicalId\":18241,\"journal\":{\"name\":\"Material Science & Engineering International Journal\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science & Engineering International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/MSEIJ.2019.03.00090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science & Engineering International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/MSEIJ.2019.03.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The use surface plasmon resonance to determine the optical parameters of UV-adhesive and control polymerization process
Ultraviolet adhesives are widely used in the manufacture of precision optical devices. It is known, that adding fillers to the glue reduces shrinkage after polymerization, reduces internal stresses, improves the reliability of the connection, and also allows you to control the optical properties of the connecting layer. By varying the amount and composition of the filler, we can change the refractive index of the compound, as well as improve the processability of the compound due to faster polymerization. The kinetics of polymerization studied on surface plasmon resonance device "Plasmon". We used UV-spectroscopy an fluorescence spectroscopy for investigation glue`s properties. Dependences of the reflection coefficient R on the angle of incidence of laser radiation onto the samples with non-polymerized and polymerized adhesives are measured. The kinetics of polymerization process was determinate. Measurements of the absorption coefficients inherent to the structures glass – adhesive – glass within the range 200…400 nm was performed. The spectra of fluorescence inherent to the structures glass – adhesive – glass within the range 400…700 nm are measured. The obtained results show that the SPR method is informative and can be applied for investigations and optimization of UV-adhesive composition. Introduction of organosilicon acrylates with high dispersion as impurities in these adhesives enables to increase the velocity of adhesive polymerization.