李三系的表示理论

Pub Date : 2022-01-01 DOI:10.12988/ija.2022.91720
A. Alshahrani
{"title":"李三系的表示理论","authors":"A. Alshahrani","doi":"10.12988/ija.2022.91720","DOIUrl":null,"url":null,"abstract":"The present work concerns certain aspects of Lie algebras, Lie triple systems and Jordan triple systems. We summarize the latest results on the universal enveloping algebras of Lie algebras and Lie triple systems. In particular, we study a Casimir element as the element in the center of the universal enveloping algebras. Using this element, we characterize the semi-simple Lie triple systems among the quadratic Lie triple systems. We define Jordan’s triple systems relationship with algebras and Lie algebras. Finally, we prove some theorems, examples and facts on all of the above. Mathematics Subject Classification: 17C50, 17B60, 17B20, 17B05","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On representation theory of Lie triple systems\",\"authors\":\"A. Alshahrani\",\"doi\":\"10.12988/ija.2022.91720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work concerns certain aspects of Lie algebras, Lie triple systems and Jordan triple systems. We summarize the latest results on the universal enveloping algebras of Lie algebras and Lie triple systems. In particular, we study a Casimir element as the element in the center of the universal enveloping algebras. Using this element, we characterize the semi-simple Lie triple systems among the quadratic Lie triple systems. We define Jordan’s triple systems relationship with algebras and Lie algebras. Finally, we prove some theorems, examples and facts on all of the above. Mathematics Subject Classification: 17C50, 17B60, 17B20, 17B05\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ija.2022.91720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ija.2022.91720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了李代数、李三重系和乔丹三重系的某些方面。总结了李代数和李三重系的普适包络代数的最新研究成果。特别地,我们研究了一个卡西米尔元作为普适包络代数的中心元。利用这个元,我们刻画了二次李三元系统中的半简单李三元系统。我们用代数和李代数定义了Jordan的三重系统关系。最后,我们对上述的一些定理、例子和事实进行了证明。数学学科分类:17C50、17B60、17B20、17B05
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On representation theory of Lie triple systems
The present work concerns certain aspects of Lie algebras, Lie triple systems and Jordan triple systems. We summarize the latest results on the universal enveloping algebras of Lie algebras and Lie triple systems. In particular, we study a Casimir element as the element in the center of the universal enveloping algebras. Using this element, we characterize the semi-simple Lie triple systems among the quadratic Lie triple systems. We define Jordan’s triple systems relationship with algebras and Lie algebras. Finally, we prove some theorems, examples and facts on all of the above. Mathematics Subject Classification: 17C50, 17B60, 17B20, 17B05
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信