{"title":"金属添加剂与硼原子对MgH2吸解吸特性的影响","authors":"M. Rafiee","doi":"10.7508/IJND.2015.03.009","DOIUrl":null,"url":null,"abstract":"Using ab initio calculations, the hydrogen desorption from Magnesium hydride (MgH2) was studied. We presented the calculated nuclear quadrupole coupling constants (NQCCs) of hydrogen atom in various systems of MgH2. The effect of interactions of some metal atoms as well as Boron atom with MgH2 host matrix; (MgH2+M) nanostructures (M=Al, Ti, V, Fe, Ni and B); were studied and 2 H-NQCCs were calculated. From results, introduction of B decreased 2 H-NQCC and consequently trend of decrease of charge density in the presence of B was observed. In the other hands introduction of B destabilized initial structure of MgH2, But in (MgH2+M) nanostructures(M=Al, Ti, V, Fe and Ni) the 2 H- NQCCs were larger than those of pure MgH2 and consequently more difficult condition for hydrogen desorption were created. However at sufficiently low B concentration (Mg15BH32); the calculation predicted existence of stable dopant system with greater","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of metal additives and Boron atom on MgH2 absorbing-desorbing characteristics using calculated NQCCs\",\"authors\":\"M. Rafiee\",\"doi\":\"10.7508/IJND.2015.03.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using ab initio calculations, the hydrogen desorption from Magnesium hydride (MgH2) was studied. We presented the calculated nuclear quadrupole coupling constants (NQCCs) of hydrogen atom in various systems of MgH2. The effect of interactions of some metal atoms as well as Boron atom with MgH2 host matrix; (MgH2+M) nanostructures (M=Al, Ti, V, Fe, Ni and B); were studied and 2 H-NQCCs were calculated. From results, introduction of B decreased 2 H-NQCC and consequently trend of decrease of charge density in the presence of B was observed. In the other hands introduction of B destabilized initial structure of MgH2, But in (MgH2+M) nanostructures(M=Al, Ti, V, Fe and Ni) the 2 H- NQCCs were larger than those of pure MgH2 and consequently more difficult condition for hydrogen desorption were created. However at sufficiently low B concentration (Mg15BH32); the calculation predicted existence of stable dopant system with greater\",\"PeriodicalId\":14081,\"journal\":{\"name\":\"international journal of nano dimension\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of nano dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/IJND.2015.03.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2015.03.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Comparison of metal additives and Boron atom on MgH2 absorbing-desorbing characteristics using calculated NQCCs
Using ab initio calculations, the hydrogen desorption from Magnesium hydride (MgH2) was studied. We presented the calculated nuclear quadrupole coupling constants (NQCCs) of hydrogen atom in various systems of MgH2. The effect of interactions of some metal atoms as well as Boron atom with MgH2 host matrix; (MgH2+M) nanostructures (M=Al, Ti, V, Fe, Ni and B); were studied and 2 H-NQCCs were calculated. From results, introduction of B decreased 2 H-NQCC and consequently trend of decrease of charge density in the presence of B was observed. In the other hands introduction of B destabilized initial structure of MgH2, But in (MgH2+M) nanostructures(M=Al, Ti, V, Fe and Ni) the 2 H- NQCCs were larger than those of pure MgH2 and consequently more difficult condition for hydrogen desorption were created. However at sufficiently low B concentration (Mg15BH32); the calculation predicted existence of stable dopant system with greater