GroupDroid:通过提取代码相似性自动分组移动恶意软件

Niccolò Marastoni, Andrea Continella, Davide Quarta, S. Zanero, M. Preda
{"title":"GroupDroid:通过提取代码相似性自动分组移动恶意软件","authors":"Niccolò Marastoni, Andrea Continella, Davide Quarta, S. Zanero, M. Preda","doi":"10.1145/3151137.3151138","DOIUrl":null,"url":null,"abstract":"As shown in previous work, malware authors often reuse portions of code in the development of their samples. Especially in the mobile scenario, there exists a phenomena, called piggybacking, that describes the act of embedding malicious code inside benign apps. In this paper, we leverage such observations to analyze mobile malware by looking at its similarities. In practice, we propose a novel approach that identifies and extracts code similarities in mobile apps. Our approach is based on static analysis and works by computing the Control Flow Graph of each method and encoding it in a feature vector used to measure similarities. We implemented our approach in a tool, GroupDroid, able to group mobile apps together according to their code similarities. Armed with Group-Droid, we then analyzed modern mobile malware samples. Our experiments show that GroupDroid is able to correctly and accurately distinguish different malware variants, and to provide useful and detailed information about the similar portions of malicious code.","PeriodicalId":68286,"journal":{"name":"中国安防产品信息","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"GroupDroid: Automatically Grouping Mobile Malware by Extracting Code Similarities\",\"authors\":\"Niccolò Marastoni, Andrea Continella, Davide Quarta, S. Zanero, M. Preda\",\"doi\":\"10.1145/3151137.3151138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As shown in previous work, malware authors often reuse portions of code in the development of their samples. Especially in the mobile scenario, there exists a phenomena, called piggybacking, that describes the act of embedding malicious code inside benign apps. In this paper, we leverage such observations to analyze mobile malware by looking at its similarities. In practice, we propose a novel approach that identifies and extracts code similarities in mobile apps. Our approach is based on static analysis and works by computing the Control Flow Graph of each method and encoding it in a feature vector used to measure similarities. We implemented our approach in a tool, GroupDroid, able to group mobile apps together according to their code similarities. Armed with Group-Droid, we then analyzed modern mobile malware samples. Our experiments show that GroupDroid is able to correctly and accurately distinguish different malware variants, and to provide useful and detailed information about the similar portions of malicious code.\",\"PeriodicalId\":68286,\"journal\":{\"name\":\"中国安防产品信息\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国安防产品信息\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1145/3151137.3151138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国安防产品信息","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1145/3151137.3151138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

正如前面的工作所示,恶意软件作者经常在开发示例时重用部分代码。特别是在移动场景中,存在一种称为piggybacking的现象,它描述了在良性应用程序中嵌入恶意代码的行为。在本文中,我们利用这些观察来分析手机恶意软件的相似之处。在实践中,我们提出了一种新的方法来识别和提取移动应用程序中的代码相似性。我们的方法基于静态分析,通过计算每种方法的控制流图并将其编码为用于测量相似性的特征向量来工作。我们在一个工具GroupDroid中实现了我们的方法,该工具能够根据代码相似性将移动应用程序分组在一起。有了Group-Droid,我们分析了现代移动恶意软件样本。我们的实验表明,GroupDroid能够正确准确地区分不同的恶意软件变体,并提供有关恶意代码相似部分的有用和详细信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GroupDroid: Automatically Grouping Mobile Malware by Extracting Code Similarities
As shown in previous work, malware authors often reuse portions of code in the development of their samples. Especially in the mobile scenario, there exists a phenomena, called piggybacking, that describes the act of embedding malicious code inside benign apps. In this paper, we leverage such observations to analyze mobile malware by looking at its similarities. In practice, we propose a novel approach that identifies and extracts code similarities in mobile apps. Our approach is based on static analysis and works by computing the Control Flow Graph of each method and encoding it in a feature vector used to measure similarities. We implemented our approach in a tool, GroupDroid, able to group mobile apps together according to their code similarities. Armed with Group-Droid, we then analyzed modern mobile malware samples. Our experiments show that GroupDroid is able to correctly and accurately distinguish different malware variants, and to provide useful and detailed information about the similar portions of malicious code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1968
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信