{"title":"一种新的用于MRI脑肿瘤图像去噪分析的DeepCNN模型","authors":"B. Srinivas, G. Rao","doi":"10.1504/ijiids.2020.10031611","DOIUrl":null,"url":null,"abstract":"Medical images must be introduced to the specialists or doctors with high accuracy for the diagnosis of critical diseases like a brain tumour. In this paper, a novel DeepCNN model is proposed to perform MRI brain tumour image denoising task and the results are compared with pre-trained DnCNN, Gaussian, adaptive, bilateral and guided filters. It is found that DeepCNN performs better than other filtering methods used. Different noise levels ranging from 5 to 50 and noises like salt and pepper, Poisson, Gaussian, and speckle noises are used to form the noisy images. Performance metrics like peak signal to noise ratio and structural similarity index are calculated and compared across all filters and noises. The proposed DeepCNN model performs well for denoising with the unknown and known noise levels. It speeds up the training process and also improves the denoising performance because of using 17 convolutional layers and batch normalisation.","PeriodicalId":39658,"journal":{"name":"International Journal of Intelligent Information and Database Systems","volume":"86 1","pages":"393-410"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel DeepCNN model for denoising analysis of MRI brain tumour images\",\"authors\":\"B. Srinivas, G. Rao\",\"doi\":\"10.1504/ijiids.2020.10031611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical images must be introduced to the specialists or doctors with high accuracy for the diagnosis of critical diseases like a brain tumour. In this paper, a novel DeepCNN model is proposed to perform MRI brain tumour image denoising task and the results are compared with pre-trained DnCNN, Gaussian, adaptive, bilateral and guided filters. It is found that DeepCNN performs better than other filtering methods used. Different noise levels ranging from 5 to 50 and noises like salt and pepper, Poisson, Gaussian, and speckle noises are used to form the noisy images. Performance metrics like peak signal to noise ratio and structural similarity index are calculated and compared across all filters and noises. The proposed DeepCNN model performs well for denoising with the unknown and known noise levels. It speeds up the training process and also improves the denoising performance because of using 17 convolutional layers and batch normalisation.\",\"PeriodicalId\":39658,\"journal\":{\"name\":\"International Journal of Intelligent Information and Database Systems\",\"volume\":\"86 1\",\"pages\":\"393-410\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijiids.2020.10031611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijiids.2020.10031611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
A novel DeepCNN model for denoising analysis of MRI brain tumour images
Medical images must be introduced to the specialists or doctors with high accuracy for the diagnosis of critical diseases like a brain tumour. In this paper, a novel DeepCNN model is proposed to perform MRI brain tumour image denoising task and the results are compared with pre-trained DnCNN, Gaussian, adaptive, bilateral and guided filters. It is found that DeepCNN performs better than other filtering methods used. Different noise levels ranging from 5 to 50 and noises like salt and pepper, Poisson, Gaussian, and speckle noises are used to form the noisy images. Performance metrics like peak signal to noise ratio and structural similarity index are calculated and compared across all filters and noises. The proposed DeepCNN model performs well for denoising with the unknown and known noise levels. It speeds up the training process and also improves the denoising performance because of using 17 convolutional layers and batch normalisation.
期刊介绍:
Intelligent information systems and intelligent database systems are a very dynamically developing field in computer sciences. IJIIDS provides a medium for exchanging scientific research and technological achievements accomplished by the international community. It focuses on research in applications of advanced intelligent technologies for data storing and processing in a wide-ranging context. The issues addressed by IJIIDS involve solutions of real-life problems, in which it is necessary to apply intelligent technologies for achieving effective results. The emphasis of the reported work is on new and original research and technological developments rather than reports on the application of existing technology to different sets of data.