{"title":"定位和完成稳定$\\infty$ -类别","authors":"L. Mantovani","doi":"10.4171/rsmup/122","DOIUrl":null,"url":null,"abstract":"We extend some classical results of Bousfield on homology localizations and nilpotent completions to a presentably symmetric monoidal stable $\\infty$-category $\\mathscr{M}$ admitting a multiplicative left-complete $t$-structure. If $E$ is a homotopy commutative algebra in $\\mathscr{M}$ we show that $E$-nilpotent completion, $E$-localization, and a suitable formal completion agree on bounded below objects when $E$ satisfies some reasonable conditions.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localizations and completions of stable $\\\\infty$-categories\",\"authors\":\"L. Mantovani\",\"doi\":\"10.4171/rsmup/122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend some classical results of Bousfield on homology localizations and nilpotent completions to a presentably symmetric monoidal stable $\\\\infty$-category $\\\\mathscr{M}$ admitting a multiplicative left-complete $t$-structure. If $E$ is a homotopy commutative algebra in $\\\\mathscr{M}$ we show that $E$-nilpotent completion, $E$-localization, and a suitable formal completion agree on bounded below objects when $E$ satisfies some reasonable conditions.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Localizations and completions of stable $\infty$-categories
We extend some classical results of Bousfield on homology localizations and nilpotent completions to a presentably symmetric monoidal stable $\infty$-category $\mathscr{M}$ admitting a multiplicative left-complete $t$-structure. If $E$ is a homotopy commutative algebra in $\mathscr{M}$ we show that $E$-nilpotent completion, $E$-localization, and a suitable formal completion agree on bounded below objects when $E$ satisfies some reasonable conditions.