定位和完成稳定$\infty$ -类别

L. Mantovani
{"title":"定位和完成稳定$\\infty$ -类别","authors":"L. Mantovani","doi":"10.4171/rsmup/122","DOIUrl":null,"url":null,"abstract":"We extend some classical results of Bousfield on homology localizations and nilpotent completions to a presentably symmetric monoidal stable $\\infty$-category $\\mathscr{M}$ admitting a multiplicative left-complete $t$-structure. If $E$ is a homotopy commutative algebra in $\\mathscr{M}$ we show that $E$-nilpotent completion, $E$-localization, and a suitable formal completion agree on bounded below objects when $E$ satisfies some reasonable conditions.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localizations and completions of stable $\\\\infty$-categories\",\"authors\":\"L. Mantovani\",\"doi\":\"10.4171/rsmup/122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend some classical results of Bousfield on homology localizations and nilpotent completions to a presentably symmetric monoidal stable $\\\\infty$-category $\\\\mathscr{M}$ admitting a multiplicative left-complete $t$-structure. If $E$ is a homotopy commutative algebra in $\\\\mathscr{M}$ we show that $E$-nilpotent completion, $E$-localization, and a suitable formal completion agree on bounded below objects when $E$ satisfies some reasonable conditions.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将Bousfield关于同调局域和幂零补的一些经典结果推广到一个具有乘性左完全$t$结构的明显对称单轴稳定$\infty$ -范畴$\mathscr{M}$。如果$E$是$\mathscr{M}$中的同伦交换代数,我们证明了当$E$满足一些合理条件时,$E$ -幂零补全、$E$ -局部化和一个合适的形式补全在有界对象上是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localizations and completions of stable $\infty$-categories
We extend some classical results of Bousfield on homology localizations and nilpotent completions to a presentably symmetric monoidal stable $\infty$-category $\mathscr{M}$ admitting a multiplicative left-complete $t$-structure. If $E$ is a homotopy commutative algebra in $\mathscr{M}$ we show that $E$-nilpotent completion, $E$-localization, and a suitable formal completion agree on bounded below objects when $E$ satisfies some reasonable conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信