水动力模型标定信息物理试验的贝叶斯实验设计

G. Abbiati, T. Sauder
{"title":"水动力模型标定信息物理试验的贝叶斯实验设计","authors":"G. Abbiati, T. Sauder","doi":"10.31224/osf.io/bxpr3","DOIUrl":null,"url":null,"abstract":"An application of cyber-physical testing to the empirical estimation of difference-frequency quadratic transfer functions is presented. As an alternative to today's procedure based on hydrodynamic tests with broad-banded or realistic (e.g., JONSWAP) wave spectra, tests in bichromatic waves are considered. The laboratory setup is the one developed by Sauder \\& Tahchiev (2020) that enables magnifying the sensitivity of the floater response to the low-frequency wave loading by adjusting the stiffness and damping parameters of a virtual soft mooring system. Bayesian experimental design is proposed to optimize the selection of the control variables (frequencies in the bichromatic wave and properties of the virtual mooring system) for a batch of cyber-physical tests. The experimental design algorithm is based on the recent work of Huan \\& Marzouk (2013). In a virtual yet realistic case study using an uncertain parametric quadratic transfer function, we demonstrate how the uncertainty of its describing parameters and other calibration parameters (low-frequency added mass and hydrodynamic damping) can be reduced. Results indicate that the proposed procedure has the potential for reducing experimental cost for calibration of hydrodynamic models.","PeriodicalId":23784,"journal":{"name":"Volume 6: Ocean Engineering","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Experimental Design of Cyber-Physical Tests for Hydrodynamic Model Calibration\",\"authors\":\"G. Abbiati, T. Sauder\",\"doi\":\"10.31224/osf.io/bxpr3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An application of cyber-physical testing to the empirical estimation of difference-frequency quadratic transfer functions is presented. As an alternative to today's procedure based on hydrodynamic tests with broad-banded or realistic (e.g., JONSWAP) wave spectra, tests in bichromatic waves are considered. The laboratory setup is the one developed by Sauder \\\\& Tahchiev (2020) that enables magnifying the sensitivity of the floater response to the low-frequency wave loading by adjusting the stiffness and damping parameters of a virtual soft mooring system. Bayesian experimental design is proposed to optimize the selection of the control variables (frequencies in the bichromatic wave and properties of the virtual mooring system) for a batch of cyber-physical tests. The experimental design algorithm is based on the recent work of Huan \\\\& Marzouk (2013). In a virtual yet realistic case study using an uncertain parametric quadratic transfer function, we demonstrate how the uncertainty of its describing parameters and other calibration parameters (low-frequency added mass and hydrodynamic damping) can be reduced. Results indicate that the proposed procedure has the potential for reducing experimental cost for calibration of hydrodynamic models.\",\"PeriodicalId\":23784,\"journal\":{\"name\":\"Volume 6: Ocean Engineering\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31224/osf.io/bxpr3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31224/osf.io/bxpr3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了网络物理测试在差频二次传递函数经验估计中的应用。作为目前基于宽频带或现实(例如JONSWAP)波浪谱的水动力试验程序的替代方案,考虑在双色波中进行试验。该实验室装置是由Sauder & Tahchiev(2020)开发的,通过调整虚拟软系泊系统的刚度和阻尼参数,可以放大浮子响应低频波载荷的灵敏度。为了优化控制变量(双色波频率和虚拟系泊系统特性)的选择,提出了贝叶斯实验设计。实验设计算法基于Huan \& Marzouk(2013)最近的工作。在一个使用不确定参数二次传递函数的虚拟但现实的案例研究中,我们演示了如何降低其描述参数和其他校准参数(低频附加质量和流体动力阻尼)的不确定性。结果表明,该方法具有降低水动力模型标定实验成本的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Experimental Design of Cyber-Physical Tests for Hydrodynamic Model Calibration
An application of cyber-physical testing to the empirical estimation of difference-frequency quadratic transfer functions is presented. As an alternative to today's procedure based on hydrodynamic tests with broad-banded or realistic (e.g., JONSWAP) wave spectra, tests in bichromatic waves are considered. The laboratory setup is the one developed by Sauder \& Tahchiev (2020) that enables magnifying the sensitivity of the floater response to the low-frequency wave loading by adjusting the stiffness and damping parameters of a virtual soft mooring system. Bayesian experimental design is proposed to optimize the selection of the control variables (frequencies in the bichromatic wave and properties of the virtual mooring system) for a batch of cyber-physical tests. The experimental design algorithm is based on the recent work of Huan \& Marzouk (2013). In a virtual yet realistic case study using an uncertain parametric quadratic transfer function, we demonstrate how the uncertainty of its describing parameters and other calibration parameters (low-frequency added mass and hydrodynamic damping) can be reduced. Results indicate that the proposed procedure has the potential for reducing experimental cost for calibration of hydrodynamic models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信