分析纳米碳对聚合物复合材料影响下制备的mmc的力学特性

4区 材料科学 Q2 Materials Science
N. Vinayaka, Anil Kumar Bodukuri, G. Jadhav, N. Padmamalini, S. Pandey, M. Balasubramanian, J. Immanuel Durai Raj, M. Suresh Kumar, Balkeshwar Singh
{"title":"分析纳米碳对聚合物复合材料影响下制备的mmc的力学特性","authors":"N. Vinayaka, Anil Kumar Bodukuri, G. Jadhav, N. Padmamalini, S. Pandey, M. Balasubramanian, J. Immanuel Durai Raj, M. Suresh Kumar, Balkeshwar Singh","doi":"10.1155/2023/5985188","DOIUrl":null,"url":null,"abstract":"The intention of this research is to recapitulate the two different fillers like E glass fiber and nanocarbon fiber, which were utilized to fabricate the polymer matrix composites by the assistance of epoxy resin. The mechanical compression molding was influenced to produce the polymer-based nanocomposites under consideration of optimal process parameters. There are three different weight fractions E glass fiber (40%, 45%, and 50%), nanocarbon fiber (10%, 15%, and 20%), and epoxy concentrations (30%, 40%, and 50%), respectively, that were used to produce the polymer matrix composites. Those processing parameters were designed by the L9 Taguchi with DOE technique to conduct the mechanical tests like tensile strength and hardness properties. The signal-to-noise ratios were successfully accomplished to identify optimal process parameters for improving the individual responses. The ANOVA and interaction was additional supports to enhance the mechanical properties. The scanning electron microscope was used to examine the fracture surfaces at the tensile fracture specimens with optimal conditions. Moreover, the maximum mechanical characteristics were attained by the increasing of nanocarbon fiber in the processed polymer matrix composites.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyze the Mechanical Characteristics of Fabricated MMCs on Nanocarbon Influencing with Polymer Composites\",\"authors\":\"N. Vinayaka, Anil Kumar Bodukuri, G. Jadhav, N. Padmamalini, S. Pandey, M. Balasubramanian, J. Immanuel Durai Raj, M. Suresh Kumar, Balkeshwar Singh\",\"doi\":\"10.1155/2023/5985188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intention of this research is to recapitulate the two different fillers like E glass fiber and nanocarbon fiber, which were utilized to fabricate the polymer matrix composites by the assistance of epoxy resin. The mechanical compression molding was influenced to produce the polymer-based nanocomposites under consideration of optimal process parameters. There are three different weight fractions E glass fiber (40%, 45%, and 50%), nanocarbon fiber (10%, 15%, and 20%), and epoxy concentrations (30%, 40%, and 50%), respectively, that were used to produce the polymer matrix composites. Those processing parameters were designed by the L9 Taguchi with DOE technique to conduct the mechanical tests like tensile strength and hardness properties. The signal-to-noise ratios were successfully accomplished to identify optimal process parameters for improving the individual responses. The ANOVA and interaction was additional supports to enhance the mechanical properties. The scanning electron microscope was used to examine the fracture surfaces at the tensile fracture specimens with optimal conditions. Moreover, the maximum mechanical characteristics were attained by the increasing of nanocarbon fiber in the processed polymer matrix composites.\",\"PeriodicalId\":16442,\"journal\":{\"name\":\"Journal of Nanomaterials\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5985188\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2023/5985188","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是概述两种不同的填料E玻璃纤维和纳米碳纤维在环氧树脂的辅助下制备聚合物基复合材料。在考虑最佳工艺参数的情况下,影响机械压缩成型制备聚合物基纳米复合材料。有三种不同的重量分数E玻璃纤维(40%,45%和50%),纳米碳纤维(10%,15%和20%)和环氧树脂浓度(30%,40%和50%),分别用于生产聚合物基复合材料。这些工艺参数由L9 Taguchi用DOE技术设计,并进行拉伸强度和硬度等力学性能测试。成功地实现了信噪比,以确定提高个体响应的最佳工艺参数。方差分析和相互作用是额外的支持,以提高机械性能。采用扫描电镜对最佳拉伸断口试样的断口形貌进行了观察。此外,纳米碳纤维含量的增加使聚合物基复合材料的力学性能达到最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyze the Mechanical Characteristics of Fabricated MMCs on Nanocarbon Influencing with Polymer Composites
The intention of this research is to recapitulate the two different fillers like E glass fiber and nanocarbon fiber, which were utilized to fabricate the polymer matrix composites by the assistance of epoxy resin. The mechanical compression molding was influenced to produce the polymer-based nanocomposites under consideration of optimal process parameters. There are three different weight fractions E glass fiber (40%, 45%, and 50%), nanocarbon fiber (10%, 15%, and 20%), and epoxy concentrations (30%, 40%, and 50%), respectively, that were used to produce the polymer matrix composites. Those processing parameters were designed by the L9 Taguchi with DOE technique to conduct the mechanical tests like tensile strength and hardness properties. The signal-to-noise ratios were successfully accomplished to identify optimal process parameters for improving the individual responses. The ANOVA and interaction was additional supports to enhance the mechanical properties. The scanning electron microscope was used to examine the fracture surfaces at the tensile fracture specimens with optimal conditions. Moreover, the maximum mechanical characteristics were attained by the increasing of nanocarbon fiber in the processed polymer matrix composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanomaterials
Journal of Nanomaterials 工程技术-材料科学:综合
CiteScore
6.10
自引率
0.00%
发文量
577
审稿时长
2.3 months
期刊介绍: The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信