耦合,广义耦合和不变测度的唯一性

M. Scheutzow
{"title":"耦合,广义耦合和不变测度的唯一性","authors":"M. Scheutzow","doi":"10.1214/20-ecp363","DOIUrl":null,"url":null,"abstract":"We provide sufficient conditions for uniqueness of an invariant probability measure of a Markov kernel in terms of (generalized) couplings. Our main theorem generalizes previous results which require the state space to be Polish. We provide an example showing that uniqueness can fail if the state space is separable and metric (but not Polish) even though a coupling defined via a continuous and positive definite function exists.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Couplings, generalized couplings and uniqueness of invariant measures\",\"authors\":\"M. Scheutzow\",\"doi\":\"10.1214/20-ecp363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide sufficient conditions for uniqueness of an invariant probability measure of a Markov kernel in terms of (generalized) couplings. Our main theorem generalizes previous results which require the state space to be Polish. We provide an example showing that uniqueness can fail if the state space is separable and metric (but not Polish) even though a coupling defined via a continuous and positive definite function exists.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-ecp363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ecp363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给出了广义耦合下马尔可夫核不变概率测度的唯一性的充分条件。我们的主要定理推广了之前的结果,这些结果要求状态空间是波兰的。我们提供了一个例子,表明如果状态空间是可分离的和度量的(但不是波兰),即使通过连续和正定函数定义的耦合存在,唯一性也可能失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Couplings, generalized couplings and uniqueness of invariant measures
We provide sufficient conditions for uniqueness of an invariant probability measure of a Markov kernel in terms of (generalized) couplings. Our main theorem generalizes previous results which require the state space to be Polish. We provide an example showing that uniqueness can fail if the state space is separable and metric (but not Polish) even though a coupling defined via a continuous and positive definite function exists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信