大孔二氧化硅泡沫中分散良好的纳米级零价铁:合成、表征和去除Cr(VI)的性能

Chaoxia Zhao, Jie Yang, Yihan Wang, B. Jiang
{"title":"大孔二氧化硅泡沫中分散良好的纳米级零价铁:合成、表征和去除Cr(VI)的性能","authors":"Chaoxia Zhao, Jie Yang, Yihan Wang, B. Jiang","doi":"10.1155/2017/3094606","DOIUrl":null,"url":null,"abstract":"Well-dispersed nanoscale zero-valent iron (NZVI) supported inside the pores of macroporous silica foams (MOSF) composites (Mx-NZVI) has been prepared as the Cr(VI) adsorbent by simply impregnating the MOSF matrix with ferric chloride, followed by the chemical reduction with NaHB4 in aqueous solution at ambient atmosphere. Through the support of MOSF, the reactivity and stability of NZVI are greatly improved. Transmission electron microscopy (TEM) results show that NZVI particles are spatially well-dispersed with a typical core-shell structure and supported inside MOSF matrix. The N2 adsorption-desorption isotherms demonstrate that the Mx-NZVI composites can maintain the macroporous structure of MOSF and exhibit a considerable high surface area (503 m2·g−1). X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (XRD) measurements confirm the core-shell structure of iron nanoparticles composed of a metallic Fe0 core and an Fe(II)/Fe(III) species shell. Batch experiments reveal that the removal efficiency of Cr(VI) can reach 100% when the solution contains 15.0 mg·L−1 of Cr(VI) at room temperature. In addition, the solution pH and the composites dosage can affect the removal efficiency of Cr(VI). The Langmuir isotherm is applicable to describe the removal process. The kinetic studies demonstrate that the removal of Cr(VI) is consistent with pseudo-second-order kinetic model.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"44 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI) Removal\",\"authors\":\"Chaoxia Zhao, Jie Yang, Yihan Wang, B. Jiang\",\"doi\":\"10.1155/2017/3094606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Well-dispersed nanoscale zero-valent iron (NZVI) supported inside the pores of macroporous silica foams (MOSF) composites (Mx-NZVI) has been prepared as the Cr(VI) adsorbent by simply impregnating the MOSF matrix with ferric chloride, followed by the chemical reduction with NaHB4 in aqueous solution at ambient atmosphere. Through the support of MOSF, the reactivity and stability of NZVI are greatly improved. Transmission electron microscopy (TEM) results show that NZVI particles are spatially well-dispersed with a typical core-shell structure and supported inside MOSF matrix. The N2 adsorption-desorption isotherms demonstrate that the Mx-NZVI composites can maintain the macroporous structure of MOSF and exhibit a considerable high surface area (503 m2·g−1). X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (XRD) measurements confirm the core-shell structure of iron nanoparticles composed of a metallic Fe0 core and an Fe(II)/Fe(III) species shell. Batch experiments reveal that the removal efficiency of Cr(VI) can reach 100% when the solution contains 15.0 mg·L−1 of Cr(VI) at room temperature. In addition, the solution pH and the composites dosage can affect the removal efficiency of Cr(VI). The Langmuir isotherm is applicable to describe the removal process. The kinetic studies demonstrate that the removal of Cr(VI) is consistent with pseudo-second-order kinetic model.\",\"PeriodicalId\":17611,\"journal\":{\"name\":\"Journal: Materials\",\"volume\":\"44 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal: Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/3094606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/3094606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在大孔二氧化硅泡沫(MOSF)复合材料(Mx-NZVI)的孔内,通过简单地将三氯化铁浸渍在MOSF基体上,然后在环境气氛下用NaHB4在水溶液中进行化学还原,制备了分散良好的纳米级零价铁(NZVI)作为Cr(VI)吸附剂。通过MOSF的支持,大大提高了NZVI的反应性和稳定性。透射电镜(TEM)结果表明,NZVI颗粒空间分散良好,具有典型的核壳结构,并支撑在MOSF基体内。N2吸附-解吸等温线表明,复合材料能保持MOSF的大孔结构,并具有相当高的比表面积(503 m2·g−1)。x射线光电子能谱(XPS)和粉末x射线衍射(XRD)测量证实了铁纳米粒子的核壳结构,该结构由金属Fe0核和Fe(II)/Fe(III)种壳组成。批量实验表明,室温条件下,当溶液中Cr(VI)的浓度为15.0 mg·L−1时,对Cr(VI)的去除率可达100%。此外,溶液pH和复合材料投加量对Cr(VI)的去除率也有影响。Langmuir等温线适用于描述去除过程。动力学研究表明,Cr(VI)的去除符合准二级动力学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI) Removal
Well-dispersed nanoscale zero-valent iron (NZVI) supported inside the pores of macroporous silica foams (MOSF) composites (Mx-NZVI) has been prepared as the Cr(VI) adsorbent by simply impregnating the MOSF matrix with ferric chloride, followed by the chemical reduction with NaHB4 in aqueous solution at ambient atmosphere. Through the support of MOSF, the reactivity and stability of NZVI are greatly improved. Transmission electron microscopy (TEM) results show that NZVI particles are spatially well-dispersed with a typical core-shell structure and supported inside MOSF matrix. The N2 adsorption-desorption isotherms demonstrate that the Mx-NZVI composites can maintain the macroporous structure of MOSF and exhibit a considerable high surface area (503 m2·g−1). X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (XRD) measurements confirm the core-shell structure of iron nanoparticles composed of a metallic Fe0 core and an Fe(II)/Fe(III) species shell. Batch experiments reveal that the removal efficiency of Cr(VI) can reach 100% when the solution contains 15.0 mg·L−1 of Cr(VI) at room temperature. In addition, the solution pH and the composites dosage can affect the removal efficiency of Cr(VI). The Langmuir isotherm is applicable to describe the removal process. The kinetic studies demonstrate that the removal of Cr(VI) is consistent with pseudo-second-order kinetic model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信