可变形的3D融合:从部分动态3D观察到完整的4D模型

Weipeng Xu, M. Salzmann, Yongtian Wang, Yue Liu
{"title":"可变形的3D融合:从部分动态3D观察到完整的4D模型","authors":"Weipeng Xu, M. Salzmann, Yongtian Wang, Yue Liu","doi":"10.1109/ICCV.2015.252","DOIUrl":null,"url":null,"abstract":"Capturing the 3D motion of dynamic, non-rigid objects has attracted significant attention in computer vision. Existing methods typically require either complete 3D volumetric observations, or a shape template. In this paper, we introduce a template-less 4D reconstruction method that incrementally fuses highly-incomplete 3D observations of a deforming object, and generates a complete, temporally-coherent shape representation of the object. To this end, we design an online algorithm that alternatively registers new observations to the current model estimate and updates the model. We demonstrate the effectiveness of our approach at reconstructing non-rigidly moving objects from highly-incomplete measurements on both sequences of partial 3D point clouds and Kinect videos.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"19 1","pages":"2183-2191"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Deformable 3D Fusion: From Partial Dynamic 3D Observations to Complete 4D Models\",\"authors\":\"Weipeng Xu, M. Salzmann, Yongtian Wang, Yue Liu\",\"doi\":\"10.1109/ICCV.2015.252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capturing the 3D motion of dynamic, non-rigid objects has attracted significant attention in computer vision. Existing methods typically require either complete 3D volumetric observations, or a shape template. In this paper, we introduce a template-less 4D reconstruction method that incrementally fuses highly-incomplete 3D observations of a deforming object, and generates a complete, temporally-coherent shape representation of the object. To this end, we design an online algorithm that alternatively registers new observations to the current model estimate and updates the model. We demonstrate the effectiveness of our approach at reconstructing non-rigidly moving objects from highly-incomplete measurements on both sequences of partial 3D point clouds and Kinect videos.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"19 1\",\"pages\":\"2183-2191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

捕捉动态、非刚性物体的三维运动在计算机视觉领域引起了广泛的关注。现有的方法通常需要完整的三维体积观测或形状模板。在本文中,我们介绍了一种无模板的四维重建方法,该方法逐步融合变形物体的高度不完整的三维观测,并生成物体的完整的、时间连贯的形状表示。为此,我们设计了一种在线算法,该算法交替地将新的观测值注册到当前模型估计中并更新模型。我们证明了我们的方法在重建非刚性移动物体从高度不完整的测量对部分3D点云和Kinect视频的两个序列的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformable 3D Fusion: From Partial Dynamic 3D Observations to Complete 4D Models
Capturing the 3D motion of dynamic, non-rigid objects has attracted significant attention in computer vision. Existing methods typically require either complete 3D volumetric observations, or a shape template. In this paper, we introduce a template-less 4D reconstruction method that incrementally fuses highly-incomplete 3D observations of a deforming object, and generates a complete, temporally-coherent shape representation of the object. To this end, we design an online algorithm that alternatively registers new observations to the current model estimate and updates the model. We demonstrate the effectiveness of our approach at reconstructing non-rigidly moving objects from highly-incomplete measurements on both sequences of partial 3D point clouds and Kinect videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信