关于小函数的线性方向

IF 0.7 Q2 MATHEMATICS
T. Chern
{"title":"关于小函数的线性方向","authors":"T. Chern","doi":"10.5556/J.TKJM.29.1998.4289","DOIUrl":null,"url":null,"abstract":"Let J be a function meromorphic in the finite complex plane C. We donate by T(r, J)(To(r, !)) the Nevanlinna(Ahlfors-Shmizu) characteristic function of J. A mero­ morphic function a(z) (including the case f(z) == c where c in Cu {oo}) is called small with respect to f if T(r, a(z)) = o(T(r, J)) as r -, +oo. \\Ve let n(兀 <p, a, J = a(z)) be the number of roots (multiple roots being counted with their multiplicities) of the equation j(z) = a(z) for z in the angular domain D(r,cp,a) = {z: largz 列< c..t, lzl < r} where 0 :::; cp < 21r, a > 0. This paper deals with the existence of the Borel directions concerning small functions for mermorphic functions of finite positive order. Using Tsuji's method, we shall mainly prove Theorem 1 stated in the abstract. Theorem~extends a result of Chuang [2, p.127, Corollary 5.3], there a(z} are restricte<l over all extended complex numbm·s. Chuang's method rs different from ours and is區ed on the existence of a sequence of filling disk with their roots in the works of Milloux [3] and Valiron [7].","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":"169 1","pages":"13-16"},"PeriodicalIF":0.7000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON BOREL DIRECTION CONCERNING SMALL FUNCTIONS\",\"authors\":\"T. Chern\",\"doi\":\"10.5556/J.TKJM.29.1998.4289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let J be a function meromorphic in the finite complex plane C. We donate by T(r, J)(To(r, !)) the Nevanlinna(Ahlfors-Shmizu) characteristic function of J. A mero­ morphic function a(z) (including the case f(z) == c where c in Cu {oo}) is called small with respect to f if T(r, a(z)) = o(T(r, J)) as r -, +oo. \\\\Ve let n(兀 <p, a, J = a(z)) be the number of roots (multiple roots being counted with their multiplicities) of the equation j(z) = a(z) for z in the angular domain D(r,cp,a) = {z: largz 列< c..t, lzl < r} where 0 :::; cp < 21r, a > 0. This paper deals with the existence of the Borel directions concerning small functions for mermorphic functions of finite positive order. Using Tsuji's method, we shall mainly prove Theorem 1 stated in the abstract. Theorem~extends a result of Chuang [2, p.127, Corollary 5.3], there a(z} are restricte<l over all extended complex numbm·s. Chuang's method rs different from ours and is區ed on the existence of a sequence of filling disk with their roots in the works of Milloux [3] and Valiron [7].\",\"PeriodicalId\":45776,\"journal\":{\"name\":\"Tamkang Journal of Mathematics\",\"volume\":\"169 1\",\"pages\":\"13-16\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tamkang Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5556/J.TKJM.29.1998.4289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/J.TKJM.29.1998.4289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设J是有限复平面c上的一个亚纯函数,我们通过T(r, J)(To(r, !))给出J的Nevanlinna(Ahlfors-Shmizu)特征函数。如果T(r, a(z)) = 0 (T(r, J)),则亚纯函数a(z)(包括c在Cu {oo}中的f(z) == c的情况)相对于f较小,则称其为r -, +oo。我们让n(兀0)本文讨论了有限正阶亚纯函数关于小函数的Borel方向的存在性。利用Tsuji的方法,我们将主要证明摘要中的定理1。定理~推广了Chuang [2, p.127,推论5.3]的结果,在所有扩展复数bm·s上存在一个(z} 本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
ON BOREL DIRECTION CONCERNING SMALL FUNCTIONS
Let J be a function meromorphic in the finite complex plane C. We donate by T(r, J)(To(r, !)) the Nevanlinna(Ahlfors-Shmizu) characteristic function of J. A mero­ morphic function a(z) (including the case f(z) == c where c in Cu {oo}) is called small with respect to f if T(r, a(z)) = o(T(r, J)) as r -, +oo. \Ve let n(兀 0. This paper deals with the existence of the Borel directions concerning small functions for mermorphic functions of finite positive order. Using Tsuji's method, we shall mainly prove Theorem 1 stated in the abstract. Theorem~extends a result of Chuang [2, p.127, Corollary 5.3], there a(z} are restricte
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信