ESG2Risk:从ESG新闻到股票波动预测的深度学习框架

Tian Guo, N. Jamet, Valentin Betrix, Louis-Alexandre Piquet, E. Hauptmann
{"title":"ESG2Risk:从ESG新闻到股票波动预测的深度学习框架","authors":"Tian Guo, N. Jamet, Valentin Betrix, Louis-Alexandre Piquet, E. Hauptmann","doi":"10.2139/ssrn.3593885","DOIUrl":null,"url":null,"abstract":"Incorporating environmental, social, and governance (ESG) considerations into systematic investments has drawn numerous attention recently. In this paper, we focus on the ESG events in financial news flow and exploring the predictive power of ESG related financial news on stock volatility. In particular, we develop a pipeline of ESG news extraction, news representations, and Bayesian inference of deep learning models. Experimental evaluation on real data and different markets demonstrates the superior predicting performance as well as the relation of high volatility prediction to stocks with potential high risk and low return. It also shows the prospect of the proposed pipeline as a flexible predicting framework for various textual data and target variables.","PeriodicalId":11800,"journal":{"name":"ERN: Stock Market Risk (Topic)","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"ESG2Risk: A Deep Learning Framework from ESG News to Stock Volatility Prediction\",\"authors\":\"Tian Guo, N. Jamet, Valentin Betrix, Louis-Alexandre Piquet, E. Hauptmann\",\"doi\":\"10.2139/ssrn.3593885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorporating environmental, social, and governance (ESG) considerations into systematic investments has drawn numerous attention recently. In this paper, we focus on the ESG events in financial news flow and exploring the predictive power of ESG related financial news on stock volatility. In particular, we develop a pipeline of ESG news extraction, news representations, and Bayesian inference of deep learning models. Experimental evaluation on real data and different markets demonstrates the superior predicting performance as well as the relation of high volatility prediction to stocks with potential high risk and low return. It also shows the prospect of the proposed pipeline as a flexible predicting framework for various textual data and target variables.\",\"PeriodicalId\":11800,\"journal\":{\"name\":\"ERN: Stock Market Risk (Topic)\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Stock Market Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3593885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Stock Market Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3593885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

最近,将环境、社会和治理(ESG)因素纳入系统性投资引起了许多关注。本文以财经新闻流中的ESG事件为研究对象,探讨ESG相关财经新闻对股票波动的预测能力。特别是,我们开发了ESG新闻提取、新闻表示和深度学习模型的贝叶斯推理管道。对真实数据和不同市场的实验评价表明,该方法具有较好的预测效果,同时也证明了高波动率预测与潜在高风险低收益股票的关系。它还显示了所提出的管道作为各种文本数据和目标变量的灵活预测框架的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESG2Risk: A Deep Learning Framework from ESG News to Stock Volatility Prediction
Incorporating environmental, social, and governance (ESG) considerations into systematic investments has drawn numerous attention recently. In this paper, we focus on the ESG events in financial news flow and exploring the predictive power of ESG related financial news on stock volatility. In particular, we develop a pipeline of ESG news extraction, news representations, and Bayesian inference of deep learning models. Experimental evaluation on real data and different markets demonstrates the superior predicting performance as well as the relation of high volatility prediction to stocks with potential high risk and low return. It also shows the prospect of the proposed pipeline as a flexible predicting framework for various textual data and target variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信