扭曲Edwards曲线上椭圆曲线密码系统的坐标系

Masaaki Shirase
{"title":"扭曲Edwards曲线上椭圆曲线密码系统的坐标系","authors":"Masaaki Shirase","doi":"10.1109/ICCE-TW.2016.7520712","DOIUrl":null,"url":null,"abstract":"This paper proposes a coordinate system in which a point (x, y) is represented as (X, Y, Z, W), where x = X/Z and y = Y/W are satisfied. In the proposed coordinate system, the cost of scalar multiplication, which is the dominant operation of elliptic curve cryptosystems, on the twisted Edwards curve ±x<sup>2</sup> + y<sup>2</sup> = 1 + dx<sup>2</sup>y<sup>2</sup> is the same as the existing lowest cost in a mixed coordinate system, and implementation of scalar multiplication becomes easier.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"105 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordinate system for elliptic curve cryptosystem on twisted Edwards curve\",\"authors\":\"Masaaki Shirase\",\"doi\":\"10.1109/ICCE-TW.2016.7520712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a coordinate system in which a point (x, y) is represented as (X, Y, Z, W), where x = X/Z and y = Y/W are satisfied. In the proposed coordinate system, the cost of scalar multiplication, which is the dominant operation of elliptic curve cryptosystems, on the twisted Edwards curve ±x<sup>2</sup> + y<sup>2</sup> = 1 + dx<sup>2</sup>y<sup>2</sup> is the same as the existing lowest cost in a mixed coordinate system, and implementation of scalar multiplication becomes easier.\",\"PeriodicalId\":6620,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"105 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2016.7520712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个坐标系,其中点(x, y)表示为(x, y, Z, W),满足x = x /Z和y = y /W。在本文提出的坐标系中,椭圆曲线密码系统的主要运算——标量乘法在扭曲爱德华兹曲线±x2 + y2 = 1 + dx2y2上的代价与混合坐标系中现有的最低代价相同,标量乘法的实现变得更加容易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinate system for elliptic curve cryptosystem on twisted Edwards curve
This paper proposes a coordinate system in which a point (x, y) is represented as (X, Y, Z, W), where x = X/Z and y = Y/W are satisfied. In the proposed coordinate system, the cost of scalar multiplication, which is the dominant operation of elliptic curve cryptosystems, on the twisted Edwards curve ±x2 + y2 = 1 + dx2y2 is the same as the existing lowest cost in a mixed coordinate system, and implementation of scalar multiplication becomes easier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信