{"title":"二元流体的自由边界问题","authors":"R. Benzi, M. Bertsch, F. Deangelis","doi":"10.4171/IFB/462","DOIUrl":null,"url":null,"abstract":"A free boundary problem for the dynamics of a glasslike binary fluid naturally leads to a singular perturbation problem for a strongly degenerate parabolic partial differential equation in 1D. We present a conjecture for an asymptotic formula for the velocity of the free boundary and prove a weak version of the conjecture. The results are based on the analysis of a family of local travelling wave solutions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A free boundary problem for binary fluids\",\"authors\":\"R. Benzi, M. Bertsch, F. Deangelis\",\"doi\":\"10.4171/IFB/462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A free boundary problem for the dynamics of a glasslike binary fluid naturally leads to a singular perturbation problem for a strongly degenerate parabolic partial differential equation in 1D. We present a conjecture for an asymptotic formula for the velocity of the free boundary and prove a weak version of the conjecture. The results are based on the analysis of a family of local travelling wave solutions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/IFB/462\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/462","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A free boundary problem for the dynamics of a glasslike binary fluid naturally leads to a singular perturbation problem for a strongly degenerate parabolic partial differential equation in 1D. We present a conjecture for an asymptotic formula for the velocity of the free boundary and prove a weak version of the conjecture. The results are based on the analysis of a family of local travelling wave solutions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.