{"title":"耦合微机械阵列中的电调谐集体响应","authors":"E. Buks, M. Roukes","doi":"10.1109/JMEMS.2002.805056","DOIUrl":null,"url":null,"abstract":"We employ optical diffraction to study the mechanical properties of a grating array of suspended doubly clamped beams made of Au. The device allows application of electrostatic coupling between the beams that gives rise to formation of a band of normal modes of vibration (phonons). We parametrically excite these collective modes and study the response by measuring the diffraction signal. The results indicate that nonlinear effects strongly affect the dynamics of the system. Further optimization will allow employing similar systems for real-time mechanical spectrum analysis of electrical waveforms.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"22 1","pages":"802-807"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"149","resultStr":"{\"title\":\"Electrically tunable collective response in a coupled micromechanical array\",\"authors\":\"E. Buks, M. Roukes\",\"doi\":\"10.1109/JMEMS.2002.805056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employ optical diffraction to study the mechanical properties of a grating array of suspended doubly clamped beams made of Au. The device allows application of electrostatic coupling between the beams that gives rise to formation of a band of normal modes of vibration (phonons). We parametrically excite these collective modes and study the response by measuring the diffraction signal. The results indicate that nonlinear effects strongly affect the dynamics of the system. Further optimization will allow employing similar systems for real-time mechanical spectrum analysis of electrical waveforms.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":\"22 1\",\"pages\":\"802-807\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"149\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2002.805056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2002.805056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrically tunable collective response in a coupled micromechanical array
We employ optical diffraction to study the mechanical properties of a grating array of suspended doubly clamped beams made of Au. The device allows application of electrostatic coupling between the beams that gives rise to formation of a band of normal modes of vibration (phonons). We parametrically excite these collective modes and study the response by measuring the diffraction signal. The results indicate that nonlinear effects strongly affect the dynamics of the system. Further optimization will allow employing similar systems for real-time mechanical spectrum analysis of electrical waveforms.