深度融合黑色,透明,反射和无纹理的对象

Chun-Yu Chai, Yu-Po Wu, Shiao-Li Tsao
{"title":"深度融合黑色,透明,反射和无纹理的对象","authors":"Chun-Yu Chai, Yu-Po Wu, Shiao-Li Tsao","doi":"10.1109/ICRA40945.2020.9196894","DOIUrl":null,"url":null,"abstract":"Structured-light and stereo cameras, which are widely used to construct point clouds for robotic applications, have different limitations on estimating depth values. Structured-light cameras fail in black, transparent, and reflective objects, which influence the light path; stereo cameras fail in texture-less objects. In this work, we propose a depth fusion model that complements these two types of methods to generate high-quality point clouds for short-range robotic applications. The model first determines the fusion weights from the two input depth images and then refines the fused depth using color features. We construct a dataset containing the aforementioned challenging objects and report the performance of our proposed model. The results reveal that our method reduces the average L1 distance on depth prediction by 75% and 52% compared with the original depth output of the structured-light camera and the stereo model, respectively. A noticeable improvement on the Iterative Closest Point (ICP) algorithm can be achieved by using the refined depth images output from our method.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"2 1","pages":"6766-6772"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Depth Fusion for Black, Transparent, Reflective and Texture-Less Objects\",\"authors\":\"Chun-Yu Chai, Yu-Po Wu, Shiao-Li Tsao\",\"doi\":\"10.1109/ICRA40945.2020.9196894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structured-light and stereo cameras, which are widely used to construct point clouds for robotic applications, have different limitations on estimating depth values. Structured-light cameras fail in black, transparent, and reflective objects, which influence the light path; stereo cameras fail in texture-less objects. In this work, we propose a depth fusion model that complements these two types of methods to generate high-quality point clouds for short-range robotic applications. The model first determines the fusion weights from the two input depth images and then refines the fused depth using color features. We construct a dataset containing the aforementioned challenging objects and report the performance of our proposed model. The results reveal that our method reduces the average L1 distance on depth prediction by 75% and 52% compared with the original depth output of the structured-light camera and the stereo model, respectively. A noticeable improvement on the Iterative Closest Point (ICP) algorithm can be achieved by using the refined depth images output from our method.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"2 1\",\"pages\":\"6766-6772\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9196894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

结构光相机和立体相机被广泛用于机器人应用的点云构建,它们在估计深度值方面有不同的局限性。结构光相机无法拍摄黑色、透明和反射物体,因为它们会影响光路;立体相机无法拍摄无纹理的物体。在这项工作中,我们提出了一种深度融合模型,该模型补充了这两种方法,为短程机器人应用生成高质量的点云。该模型首先从两个输入深度图像中确定融合权重,然后利用颜色特征对融合深度进行细化。我们构建了一个包含上述挑战性对象的数据集,并报告了我们提出的模型的性能。结果表明,与结构光相机和立体模型的原始深度输出相比,我们的方法在深度预测上的平均L1距离分别减少了75%和52%。通过使用该方法输出的精细深度图像,可以显著改进迭代最近点(ICP)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Depth Fusion for Black, Transparent, Reflective and Texture-Less Objects
Structured-light and stereo cameras, which are widely used to construct point clouds for robotic applications, have different limitations on estimating depth values. Structured-light cameras fail in black, transparent, and reflective objects, which influence the light path; stereo cameras fail in texture-less objects. In this work, we propose a depth fusion model that complements these two types of methods to generate high-quality point clouds for short-range robotic applications. The model first determines the fusion weights from the two input depth images and then refines the fused depth using color features. We construct a dataset containing the aforementioned challenging objects and report the performance of our proposed model. The results reveal that our method reduces the average L1 distance on depth prediction by 75% and 52% compared with the original depth output of the structured-light camera and the stereo model, respectively. A noticeable improvement on the Iterative Closest Point (ICP) algorithm can be achieved by using the refined depth images output from our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信