恒星距离和速度(三)

Miloš Čojanović
{"title":"恒星距离和速度(三)","authors":"Miloš Čojanović","doi":"10.24297/JAP.V19I.9039","DOIUrl":null,"url":null,"abstract":"The use of parallax angles is one of the standard methods for determining stellar distance. The problem that arises in using this method is how to measure that angle. In order for the measurement to be correct, it is necessary for the object we are observing to be stationary in relation to the sun. This is generally not true. One way to overcome this problem is to observe the object from two different places at the same time. This would be technically possible but will probably never be realized. Another way to determine the distance is given in [1]. With certain assumptions, this is a mathematically completely correct method. After the publication of the third Gaia’s catalog [2], we are now able to test the proposed method using real data. Unfortunately, for the majority of stars it is not possible to obtain the distance directly, but with the help of some additional measurements we would be able to indirectly determine the distance of such stars.","PeriodicalId":15024,"journal":{"name":"Journal of Advances in Physics","volume":"65 1","pages":"142-155"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stellar distance and velocity (III)\",\"authors\":\"Miloš Čojanović\",\"doi\":\"10.24297/JAP.V19I.9039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of parallax angles is one of the standard methods for determining stellar distance. The problem that arises in using this method is how to measure that angle. In order for the measurement to be correct, it is necessary for the object we are observing to be stationary in relation to the sun. This is generally not true. One way to overcome this problem is to observe the object from two different places at the same time. This would be technically possible but will probably never be realized. Another way to determine the distance is given in [1]. With certain assumptions, this is a mathematically completely correct method. After the publication of the third Gaia’s catalog [2], we are now able to test the proposed method using real data. Unfortunately, for the majority of stars it is not possible to obtain the distance directly, but with the help of some additional measurements we would be able to indirectly determine the distance of such stars.\",\"PeriodicalId\":15024,\"journal\":{\"name\":\"Journal of Advances in Physics\",\"volume\":\"65 1\",\"pages\":\"142-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24297/JAP.V19I.9039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/JAP.V19I.9039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用视差角是确定恒星距离的标准方法之一。使用这种方法产生的问题是如何测量这个角度。为了使测量准确,我们所观察的物体相对于太阳必须是静止的。这通常是不正确的。克服这个问题的一种方法是同时从两个不同的地方观察物体。这在技术上是可能的,但可能永远不会实现。另一种确定距离的方法在[1]中给出。在一定的假设下,这是一个数学上完全正确的方法。在第三个盖亚星表[2]发表后,我们现在可以用真实的数据来测试我们提出的方法。不幸的是,对大多数恒星来说,直接获得距离是不可能的,但是借助一些额外的测量,我们将能够间接地确定这些恒星的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stellar distance and velocity (III)
The use of parallax angles is one of the standard methods for determining stellar distance. The problem that arises in using this method is how to measure that angle. In order for the measurement to be correct, it is necessary for the object we are observing to be stationary in relation to the sun. This is generally not true. One way to overcome this problem is to observe the object from two different places at the same time. This would be technically possible but will probably never be realized. Another way to determine the distance is given in [1]. With certain assumptions, this is a mathematically completely correct method. After the publication of the third Gaia’s catalog [2], we are now able to test the proposed method using real data. Unfortunately, for the majority of stars it is not possible to obtain the distance directly, but with the help of some additional measurements we would be able to indirectly determine the distance of such stars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信