利用离散元法分析锥形弹丸穿透颗粒时的行为

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Hoo Min Lee, Tae Hun Kim, Gil Ho Yoon
{"title":"利用离散元法分析锥形弹丸穿透颗粒时的行为","authors":"Hoo Min Lee,&nbsp;Tae Hun Kim,&nbsp;Gil Ho Yoon","doi":"10.1007/s40571-023-00647-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the penetration behavior of a cone-shaped projectile into granular particles was analyzed using simulations based on the discrete element method (DEM). The rate-independent friction force and inertial drag force proportional to the squared projectile velocity are the principal force terms that interact between the projectile and the particles. Simulation results show that the friction force and inertial drag force follow the power law with respect to penetration depth and have changing tendencies before and after the complete penetration of the projectile into particles. Based on the results, a mathematical model is proposed to simplify the force terms using the penetration depth, projectile tip angle, and projectile length. The simplified force terms are physically explained using changes in the projectile–particle contact area and the fluidization of particles during dynamic collisions. Experiments were conducted using steel projectiles and ABS plastic beads to verify the accuracy of the mathematical model for real-life cases. The results of this study validate the proposed mathematical model of the rate-independent friction force and inertial drag force regarding the cone-shaped projectile behavior during penetration into granular particles.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 2","pages":"689 - 703"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method\",\"authors\":\"Hoo Min Lee,&nbsp;Tae Hun Kim,&nbsp;Gil Ho Yoon\",\"doi\":\"10.1007/s40571-023-00647-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the penetration behavior of a cone-shaped projectile into granular particles was analyzed using simulations based on the discrete element method (DEM). The rate-independent friction force and inertial drag force proportional to the squared projectile velocity are the principal force terms that interact between the projectile and the particles. Simulation results show that the friction force and inertial drag force follow the power law with respect to penetration depth and have changing tendencies before and after the complete penetration of the projectile into particles. Based on the results, a mathematical model is proposed to simplify the force terms using the penetration depth, projectile tip angle, and projectile length. The simplified force terms are physically explained using changes in the projectile–particle contact area and the fluidization of particles during dynamic collisions. Experiments were conducted using steel projectiles and ABS plastic beads to verify the accuracy of the mathematical model for real-life cases. The results of this study validate the proposed mathematical model of the rate-independent friction force and inertial drag force regarding the cone-shaped projectile behavior during penetration into granular particles.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"11 2\",\"pages\":\"689 - 703\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-023-00647-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00647-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用离散元法(DEM)模拟分析了锥形弹丸对颗粒的穿透行为。与速度无关的摩擦力和与弹丸速度平方成正比的惯性阻力是弹丸与颗粒之间相互作用的主要力项。模拟结果表明,摩擦力和惯性阻力与穿透深度有关,遵循幂律,并且在弹丸完全穿透颗粒前后有变化趋势。根据研究结果,提出了一个数学模型,利用穿透深度、弹丸顶角和弹丸长度来简化力项。在动态碰撞过程中,利用弹丸与颗粒接触面积的变化和颗粒的流体化对简化的力项进行物理解释。使用钢制弹丸和 ABS 塑料珠进行了实验,以验证数学模型在实际情况下的准确性。研究结果验证了所提出的与速率无关的摩擦力和惯性阻力数学模型,该模型涉及锥形弹丸在穿透颗粒时的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method

Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method

Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method

In this study, the penetration behavior of a cone-shaped projectile into granular particles was analyzed using simulations based on the discrete element method (DEM). The rate-independent friction force and inertial drag force proportional to the squared projectile velocity are the principal force terms that interact between the projectile and the particles. Simulation results show that the friction force and inertial drag force follow the power law with respect to penetration depth and have changing tendencies before and after the complete penetration of the projectile into particles. Based on the results, a mathematical model is proposed to simplify the force terms using the penetration depth, projectile tip angle, and projectile length. The simplified force terms are physically explained using changes in the projectile–particle contact area and the fluidization of particles during dynamic collisions. Experiments were conducted using steel projectiles and ABS plastic beads to verify the accuracy of the mathematical model for real-life cases. The results of this study validate the proposed mathematical model of the rate-independent friction force and inertial drag force regarding the cone-shaped projectile behavior during penetration into granular particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信