{"title":"铌酸锂基MEMS谐振器的热非线性研究","authors":"Ruochen Lu, S. Gong","doi":"10.1109/TRANSDUCERS.2015.7181345","DOIUrl":null,"url":null,"abstract":"This paper reports an iteration-driven method to numerically study the thermal nonlinearity in lithium niobate (LN) based MEMS resonators. In comparison to the state of the art, this technique adopts an approximation-free algorithm and thus more accurately captures the complex nonlinear dynamics that often evades the description by Duffing equation. For the first time, the nonlinearity of LN-based laterally vibrating resonators is theoretically investigated and experimentally validated. The admittance response of both S0 and SH0 mode devices was simulated and measured in this work by forward and backward sweeping the excitation frequency at different power levels. Excellent agreement between simulations and measurements has been achieved.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Study of thermal nonlinearity in lithium niobate-based MEMS resonators\",\"authors\":\"Ruochen Lu, S. Gong\",\"doi\":\"10.1109/TRANSDUCERS.2015.7181345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports an iteration-driven method to numerically study the thermal nonlinearity in lithium niobate (LN) based MEMS resonators. In comparison to the state of the art, this technique adopts an approximation-free algorithm and thus more accurately captures the complex nonlinear dynamics that often evades the description by Duffing equation. For the first time, the nonlinearity of LN-based laterally vibrating resonators is theoretically investigated and experimentally validated. The admittance response of both S0 and SH0 mode devices was simulated and measured in this work by forward and backward sweeping the excitation frequency at different power levels. Excellent agreement between simulations and measurements has been achieved.\",\"PeriodicalId\":6465,\"journal\":{\"name\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2015.7181345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7181345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of thermal nonlinearity in lithium niobate-based MEMS resonators
This paper reports an iteration-driven method to numerically study the thermal nonlinearity in lithium niobate (LN) based MEMS resonators. In comparison to the state of the art, this technique adopts an approximation-free algorithm and thus more accurately captures the complex nonlinear dynamics that often evades the description by Duffing equation. For the first time, the nonlinearity of LN-based laterally vibrating resonators is theoretically investigated and experimentally validated. The admittance response of both S0 and SH0 mode devices was simulated and measured in this work by forward and backward sweeping the excitation frequency at different power levels. Excellent agreement between simulations and measurements has been achieved.