{"title":"局部TGF-β上调导致挤压综合征小鼠肾小管Na + -K + atp酶和高钾血症降低","authors":"S. Mizuno, Y. Mizuno-Horikawa","doi":"10.4236/PP.2016.712054","DOIUrl":null,"url":null,"abstract":"Hyperkalemia is one of the most important risk factors in patients suffering from crush syndrome with rhabdomyolysis. Glycerol-injected animals have been used as an experimental model of rhabdomyolysis-induced acute kidney injury (AKI), but little information is available for the onset and molecular mechanism of hyperkalemia. In our murine model, plasma potassium levels increased after a single injection of 50%-glycerol solution (10 ml/kg, i.m.) during the progression of muscular and renal injuries. Renal tubular Na+-K+-ATPase functions as ion-exchange pomp for potassium clearance from blood into renal tubular epithelial cells. Renal histochemistry revealed an apparent decrease in the tubular Na+-K+-ATPase expression, especially at 24 hours post-glycerol challenge in our AKI model. In contrast to the loss in active Na+-K+-ATPase, there was a significant increase in the renal levels of transforming growth factor-β (TGF-β) that is known to suppress Na+-K+-ATPase production in vitro. When anti-TGF-β antibody was administered in mice after the glycerol challenge, the suppression of renal Na+-K+-ATPase activity was partially restored. As a result, hyperkalemia was improved in the TGF-β-neutralized AKI mice, associated with a significant decrease in plasma potassium concentration. Taken together, we predict that endogenous TGF-β is a key regulator for inhibiting Na+-K+-ATPase production and, in part, enhancing hyperkalemia during progression of rhabdomyolysis-induced AKI. This is, to our knowledge, the first report to determine a critical role of endogenous TGF-β in renal potassium metabolism during crush syndrome.","PeriodicalId":19875,"journal":{"name":"Pharmacology & Pharmacy","volume":"2 1","pages":"481-492"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Up-Regulation of Local TGF-β Contributes to a Decrease in Renal Tubular Na + -K + ATPase and Hyperkalemia in a Mouse Model of Crush Syndrome\",\"authors\":\"S. Mizuno, Y. Mizuno-Horikawa\",\"doi\":\"10.4236/PP.2016.712054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperkalemia is one of the most important risk factors in patients suffering from crush syndrome with rhabdomyolysis. Glycerol-injected animals have been used as an experimental model of rhabdomyolysis-induced acute kidney injury (AKI), but little information is available for the onset and molecular mechanism of hyperkalemia. In our murine model, plasma potassium levels increased after a single injection of 50%-glycerol solution (10 ml/kg, i.m.) during the progression of muscular and renal injuries. Renal tubular Na+-K+-ATPase functions as ion-exchange pomp for potassium clearance from blood into renal tubular epithelial cells. Renal histochemistry revealed an apparent decrease in the tubular Na+-K+-ATPase expression, especially at 24 hours post-glycerol challenge in our AKI model. In contrast to the loss in active Na+-K+-ATPase, there was a significant increase in the renal levels of transforming growth factor-β (TGF-β) that is known to suppress Na+-K+-ATPase production in vitro. When anti-TGF-β antibody was administered in mice after the glycerol challenge, the suppression of renal Na+-K+-ATPase activity was partially restored. As a result, hyperkalemia was improved in the TGF-β-neutralized AKI mice, associated with a significant decrease in plasma potassium concentration. Taken together, we predict that endogenous TGF-β is a key regulator for inhibiting Na+-K+-ATPase production and, in part, enhancing hyperkalemia during progression of rhabdomyolysis-induced AKI. This is, to our knowledge, the first report to determine a critical role of endogenous TGF-β in renal potassium metabolism during crush syndrome.\",\"PeriodicalId\":19875,\"journal\":{\"name\":\"Pharmacology & Pharmacy\",\"volume\":\"2 1\",\"pages\":\"481-492\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology & Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/PP.2016.712054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology & Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/PP.2016.712054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Up-Regulation of Local TGF-β Contributes to a Decrease in Renal Tubular Na + -K + ATPase and Hyperkalemia in a Mouse Model of Crush Syndrome
Hyperkalemia is one of the most important risk factors in patients suffering from crush syndrome with rhabdomyolysis. Glycerol-injected animals have been used as an experimental model of rhabdomyolysis-induced acute kidney injury (AKI), but little information is available for the onset and molecular mechanism of hyperkalemia. In our murine model, plasma potassium levels increased after a single injection of 50%-glycerol solution (10 ml/kg, i.m.) during the progression of muscular and renal injuries. Renal tubular Na+-K+-ATPase functions as ion-exchange pomp for potassium clearance from blood into renal tubular epithelial cells. Renal histochemistry revealed an apparent decrease in the tubular Na+-K+-ATPase expression, especially at 24 hours post-glycerol challenge in our AKI model. In contrast to the loss in active Na+-K+-ATPase, there was a significant increase in the renal levels of transforming growth factor-β (TGF-β) that is known to suppress Na+-K+-ATPase production in vitro. When anti-TGF-β antibody was administered in mice after the glycerol challenge, the suppression of renal Na+-K+-ATPase activity was partially restored. As a result, hyperkalemia was improved in the TGF-β-neutralized AKI mice, associated with a significant decrease in plasma potassium concentration. Taken together, we predict that endogenous TGF-β is a key regulator for inhibiting Na+-K+-ATPase production and, in part, enhancing hyperkalemia during progression of rhabdomyolysis-induced AKI. This is, to our knowledge, the first report to determine a critical role of endogenous TGF-β in renal potassium metabolism during crush syndrome.