制造后混合信号电路的仿真与故障诊断

Kyle Pawlowski, Sumit Chkravarty, A. Joginipelly
{"title":"制造后混合信号电路的仿真与故障诊断","authors":"Kyle Pawlowski, Sumit Chkravarty, A. Joginipelly","doi":"10.23919/PanPacific48324.2020.9059414","DOIUrl":null,"url":null,"abstract":"A major problem in circuit board remanufacturing is the identification of parametric faults from age or stress to the individual passive components. We propose a deep machine learning system for simulating and identifying such faults. A simulated dataset is generated for the most common faults in a circuit. This dataset is used to train deep machine learning classification algorithms to identify and classify the faults. The accuracy of system is measured by comparing with real circuit boards in operation.","PeriodicalId":6691,"journal":{"name":"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and Fault Diagnosis in Post-Manufacturing Mixed Signal Circuits\",\"authors\":\"Kyle Pawlowski, Sumit Chkravarty, A. Joginipelly\",\"doi\":\"10.23919/PanPacific48324.2020.9059414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major problem in circuit board remanufacturing is the identification of parametric faults from age or stress to the individual passive components. We propose a deep machine learning system for simulating and identifying such faults. A simulated dataset is generated for the most common faults in a circuit. This dataset is used to train deep machine learning classification algorithms to identify and classify the faults. The accuracy of system is measured by comparing with real circuit boards in operation.\",\"PeriodicalId\":6691,\"journal\":{\"name\":\"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)\",\"volume\":\"16 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/PanPacific48324.2020.9059414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PanPacific48324.2020.9059414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电路板再制造中的一个主要问题是识别从老化或应力到单个无源元件的参数故障。我们提出了一个深度机器学习系统来模拟和识别这些故障。针对电路中最常见的故障生成模拟数据集。该数据集用于训练深度机器学习分类算法来识别和分类故障。通过与实际电路板的对比,测量了系统的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation and Fault Diagnosis in Post-Manufacturing Mixed Signal Circuits
A major problem in circuit board remanufacturing is the identification of parametric faults from age or stress to the individual passive components. We propose a deep machine learning system for simulating and identifying such faults. A simulated dataset is generated for the most common faults in a circuit. This dataset is used to train deep machine learning classification algorithms to identify and classify the faults. The accuracy of system is measured by comparing with real circuit boards in operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信