{"title":"细障碍问题:估计到精确解的距离","authors":"D. Apushkinskaya, S. Repin","doi":"10.4171/IFB/410","DOIUrl":null,"url":null,"abstract":"We consider elliptic variational inequalities generated by obstacle type problems with thin obstacles. For this class of problems, we deduce estimates of the distance (measured in terms of the natural energy norm) between the exact solution and any function that satisfies the boundary condition and is admissible with respect to the obstacle condition (i.e., it is valid for any approximation regardless of the method by which it was found). Computation of the estimates does not require knowledge of the exact solution and uses only the problem data and an approximation. The estimates provide guaranteed upper bounds of the error (error majorants) and vanish if and only if the approximation coincides with the exact solution. In the last section, the efficiency of error majorants is confirmed by an example, where the exact solution is known.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thin obstacle problem: Estimates of the distance to the exact solution\",\"authors\":\"D. Apushkinskaya, S. Repin\",\"doi\":\"10.4171/IFB/410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider elliptic variational inequalities generated by obstacle type problems with thin obstacles. For this class of problems, we deduce estimates of the distance (measured in terms of the natural energy norm) between the exact solution and any function that satisfies the boundary condition and is admissible with respect to the obstacle condition (i.e., it is valid for any approximation regardless of the method by which it was found). Computation of the estimates does not require knowledge of the exact solution and uses only the problem data and an approximation. The estimates provide guaranteed upper bounds of the error (error majorants) and vanish if and only if the approximation coincides with the exact solution. In the last section, the efficiency of error majorants is confirmed by an example, where the exact solution is known.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/IFB/410\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/410","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Thin obstacle problem: Estimates of the distance to the exact solution
We consider elliptic variational inequalities generated by obstacle type problems with thin obstacles. For this class of problems, we deduce estimates of the distance (measured in terms of the natural energy norm) between the exact solution and any function that satisfies the boundary condition and is admissible with respect to the obstacle condition (i.e., it is valid for any approximation regardless of the method by which it was found). Computation of the estimates does not require knowledge of the exact solution and uses only the problem data and an approximation. The estimates provide guaranteed upper bounds of the error (error majorants) and vanish if and only if the approximation coincides with the exact solution. In the last section, the efficiency of error majorants is confirmed by an example, where the exact solution is known.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.