legende -多项式商的线性复杂度

Zhixiong Chen
{"title":"legende -多项式商的线性复杂度","authors":"Zhixiong Chen","doi":"10.1049/iet-ifs.2017.0307","DOIUrl":null,"url":null,"abstract":"We continue to investigate binary sequence $(f_u)$ over $\\{0,1\\}$ defined by $(-1)^{f_u}=\\left(\\frac{(u^w-u^{wp})/p}{p}\\right)$ for integers $u\\ge 0$, where $\\left(\\frac{\\cdot}{p}\\right)$ is the Legendre symbol and we restrict $\\left(\\frac{0}{p}\\right)=1$. In an earlier work, the linear complexity of $(f_u)$ was determined for $w=p-1$ under the assumption of $2^{p-1}\\not\\equiv 1 \\pmod {p^2}$. In this work, we give possible values on the linear complexity of $(f_u)$ for all $1\\le w<p-1$ under the same conditions. We also state that the case of larger $w(\\geq p)$ can be reduced to that of $0\\leq w\\leq p-1$.","PeriodicalId":13305,"journal":{"name":"IET Inf. Secur.","volume":"20 1","pages":"414-418"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear complexity of Legendre-polynomial quotients\",\"authors\":\"Zhixiong Chen\",\"doi\":\"10.1049/iet-ifs.2017.0307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue to investigate binary sequence $(f_u)$ over $\\\\{0,1\\\\}$ defined by $(-1)^{f_u}=\\\\left(\\\\frac{(u^w-u^{wp})/p}{p}\\\\right)$ for integers $u\\\\ge 0$, where $\\\\left(\\\\frac{\\\\cdot}{p}\\\\right)$ is the Legendre symbol and we restrict $\\\\left(\\\\frac{0}{p}\\\\right)=1$. In an earlier work, the linear complexity of $(f_u)$ was determined for $w=p-1$ under the assumption of $2^{p-1}\\\\not\\\\equiv 1 \\\\pmod {p^2}$. In this work, we give possible values on the linear complexity of $(f_u)$ for all $1\\\\le w<p-1$ under the same conditions. We also state that the case of larger $w(\\\\geq p)$ can be reduced to that of $0\\\\leq w\\\\leq p-1$.\",\"PeriodicalId\":13305,\"journal\":{\"name\":\"IET Inf. Secur.\",\"volume\":\"20 1\",\"pages\":\"414-418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-ifs.2017.0307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-ifs.2017.0307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们继续研究由$(-1)^{f_u}=\left(\frac{(u^w-u^{wp})/p}{p}\right)$为整数$u\ge 0$定义的$\{0,1\}$上的二进制序列$(f_u)$,其中$\left(\frac{\cdot}{p}\right)$是Legendre符号,并且我们限制$\left(\frac{0}{p}\right)=1$。在较早的工作中,在$2^{p-1}\not\equiv 1 \pmod {p^2}$的假设下,确定了$w=p-1$的线性复杂度$(f_u)$。在这项工作中,我们给出了在相同条件下所有$1\le w本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Linear complexity of Legendre-polynomial quotients
We continue to investigate binary sequence $(f_u)$ over $\{0,1\}$ defined by $(-1)^{f_u}=\left(\frac{(u^w-u^{wp})/p}{p}\right)$ for integers $u\ge 0$, where $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol and we restrict $\left(\frac{0}{p}\right)=1$. In an earlier work, the linear complexity of $(f_u)$ was determined for $w=p-1$ under the assumption of $2^{p-1}\not\equiv 1 \pmod {p^2}$. In this work, we give possible values on the linear complexity of $(f_u)$ for all $1\le w
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信