Mehrdad Khani Shirkoohi, Mohammad Alizadeh, J. Hoydis, Phil Fleming
{"title":"利用信道局部性实现自适应海量MIMO信号检测","authors":"Mehrdad Khani Shirkoohi, Mohammad Alizadeh, J. Hoydis, Phil Fleming","doi":"10.1109/ICASSP40776.2020.9052971","DOIUrl":null,"url":null,"abstract":"We propose MMNet, a deep learning MIMO detection scheme that significantly outperforms existing approaches on realistic channels with the same or lower computational complexity. MMNet’s design builds on the theory of iterative soft-thresholding algorithms and uses a novel training algorithm that leverages temporal and spectral correlation in real channels to accelerate training. These innovations make it practical to train MMNet online for every realization of the channel. On spatially-correlated channels, MMNet achieves the same error rate as the next-best learning scheme (OAMPNet) at 2.5dB lower signal-to-noise ratio (SNR), and with at least 10× less computational complexity. MMNet is also 4–8dB better overall than the linear minimum mean square error (MMSE) detector.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"40 1","pages":"8565-8568"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploiting Channel Locality for Adaptive Massive MIMO Signal Detection\",\"authors\":\"Mehrdad Khani Shirkoohi, Mohammad Alizadeh, J. Hoydis, Phil Fleming\",\"doi\":\"10.1109/ICASSP40776.2020.9052971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose MMNet, a deep learning MIMO detection scheme that significantly outperforms existing approaches on realistic channels with the same or lower computational complexity. MMNet’s design builds on the theory of iterative soft-thresholding algorithms and uses a novel training algorithm that leverages temporal and spectral correlation in real channels to accelerate training. These innovations make it practical to train MMNet online for every realization of the channel. On spatially-correlated channels, MMNet achieves the same error rate as the next-best learning scheme (OAMPNet) at 2.5dB lower signal-to-noise ratio (SNR), and with at least 10× less computational complexity. MMNet is also 4–8dB better overall than the linear minimum mean square error (MMSE) detector.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"40 1\",\"pages\":\"8565-8568\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9052971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9052971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting Channel Locality for Adaptive Massive MIMO Signal Detection
We propose MMNet, a deep learning MIMO detection scheme that significantly outperforms existing approaches on realistic channels with the same or lower computational complexity. MMNet’s design builds on the theory of iterative soft-thresholding algorithms and uses a novel training algorithm that leverages temporal and spectral correlation in real channels to accelerate training. These innovations make it practical to train MMNet online for every realization of the channel. On spatially-correlated channels, MMNet achieves the same error rate as the next-best learning scheme (OAMPNet) at 2.5dB lower signal-to-noise ratio (SNR), and with at least 10× less computational complexity. MMNet is also 4–8dB better overall than the linear minimum mean square error (MMSE) detector.