利用信道局部性实现自适应海量MIMO信号检测

Mehrdad Khani Shirkoohi, Mohammad Alizadeh, J. Hoydis, Phil Fleming
{"title":"利用信道局部性实现自适应海量MIMO信号检测","authors":"Mehrdad Khani Shirkoohi, Mohammad Alizadeh, J. Hoydis, Phil Fleming","doi":"10.1109/ICASSP40776.2020.9052971","DOIUrl":null,"url":null,"abstract":"We propose MMNet, a deep learning MIMO detection scheme that significantly outperforms existing approaches on realistic channels with the same or lower computational complexity. MMNet’s design builds on the theory of iterative soft-thresholding algorithms and uses a novel training algorithm that leverages temporal and spectral correlation in real channels to accelerate training. These innovations make it practical to train MMNet online for every realization of the channel. On spatially-correlated channels, MMNet achieves the same error rate as the next-best learning scheme (OAMPNet) at 2.5dB lower signal-to-noise ratio (SNR), and with at least 10× less computational complexity. MMNet is also 4–8dB better overall than the linear minimum mean square error (MMSE) detector.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"40 1","pages":"8565-8568"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploiting Channel Locality for Adaptive Massive MIMO Signal Detection\",\"authors\":\"Mehrdad Khani Shirkoohi, Mohammad Alizadeh, J. Hoydis, Phil Fleming\",\"doi\":\"10.1109/ICASSP40776.2020.9052971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose MMNet, a deep learning MIMO detection scheme that significantly outperforms existing approaches on realistic channels with the same or lower computational complexity. MMNet’s design builds on the theory of iterative soft-thresholding algorithms and uses a novel training algorithm that leverages temporal and spectral correlation in real channels to accelerate training. These innovations make it practical to train MMNet online for every realization of the channel. On spatially-correlated channels, MMNet achieves the same error rate as the next-best learning scheme (OAMPNet) at 2.5dB lower signal-to-noise ratio (SNR), and with at least 10× less computational complexity. MMNet is also 4–8dB better overall than the linear minimum mean square error (MMSE) detector.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"40 1\",\"pages\":\"8565-8568\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9052971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9052971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了MMNet,这是一种深度学习MIMO检测方案,在具有相同或更低计算复杂度的实际信道上显着优于现有方法。MMNet的设计建立在迭代软阈值算法理论的基础上,并使用了一种新的训练算法,该算法利用真实信道中的时间和频谱相关性来加速训练。这些创新使得对MMNet进行在线培训以实现该渠道的所有实现成为可能。在空间相关信道上,MMNet的误差率与次优学习方案(OAMPNet)相同,信噪比(SNR)降低2.5dB,计算复杂度至少降低10倍。MMNet总体上也比线性最小均方误差(MMSE)检测器好4-8dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Channel Locality for Adaptive Massive MIMO Signal Detection
We propose MMNet, a deep learning MIMO detection scheme that significantly outperforms existing approaches on realistic channels with the same or lower computational complexity. MMNet’s design builds on the theory of iterative soft-thresholding algorithms and uses a novel training algorithm that leverages temporal and spectral correlation in real channels to accelerate training. These innovations make it practical to train MMNet online for every realization of the channel. On spatially-correlated channels, MMNet achieves the same error rate as the next-best learning scheme (OAMPNet) at 2.5dB lower signal-to-noise ratio (SNR), and with at least 10× less computational complexity. MMNet is also 4–8dB better overall than the linear minimum mean square error (MMSE) detector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信