对机器人系统识别的贡献:使用状态观测器降噪

Bilal Tout, Jason Chevrie, L. Vermeiren, A. Dequidt
{"title":"对机器人系统识别的贡献:使用状态观测器降噪","authors":"Bilal Tout, Jason Chevrie, L. Vermeiren, A. Dequidt","doi":"10.5220/0011322600003271","DOIUrl":null,"url":null,"abstract":": Conventional identification approach based on the inverse dynamic identification model using least-squares and direct and inverse dynamic identification techniques has been effectively used to identify inertial and friction parameters of robots. However these methods require a well-tuned filtering of the observation matrix and the measured torque to avoid bias in identification results. Meanwhile, the cutoff frequency of the low-pass filter f c must be well chosen, which is not always easy to do. In this paper, we propose to use a Kalman filter to reduce the noise of the observation matrix and the output torque signal of the PID controller.","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"74 1","pages":"695-702"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contribution to Robot System Identification: Noise Reduction using a State Observer\",\"authors\":\"Bilal Tout, Jason Chevrie, L. Vermeiren, A. Dequidt\",\"doi\":\"10.5220/0011322600003271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Conventional identification approach based on the inverse dynamic identification model using least-squares and direct and inverse dynamic identification techniques has been effectively used to identify inertial and friction parameters of robots. However these methods require a well-tuned filtering of the observation matrix and the measured torque to avoid bias in identification results. Meanwhile, the cutoff frequency of the low-pass filter f c must be well chosen, which is not always easy to do. In this paper, we propose to use a Kalman filter to reduce the noise of the observation matrix and the output torque signal of the PID controller.\",\"PeriodicalId\":6436,\"journal\":{\"name\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"volume\":\"74 1\",\"pages\":\"695-702\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011322600003271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011322600003271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于最小二乘逆动力学辨识模型的传统辨识方法和正逆动力学辨识技术已被有效地应用于机器人的惯性和摩擦参数辨识。然而,这些方法需要对观测矩阵和测量扭矩进行良好的滤波,以避免识别结果的偏差。同时,必须选择好低通滤波器的截止频率,这并不容易做到。在本文中,我们提出使用卡尔曼滤波器来降低观测矩阵和PID控制器输出转矩信号的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contribution to Robot System Identification: Noise Reduction using a State Observer
: Conventional identification approach based on the inverse dynamic identification model using least-squares and direct and inverse dynamic identification techniques has been effectively used to identify inertial and friction parameters of robots. However these methods require a well-tuned filtering of the observation matrix and the measured torque to avoid bias in identification results. Meanwhile, the cutoff frequency of the low-pass filter f c must be well chosen, which is not always easy to do. In this paper, we propose to use a Kalman filter to reduce the noise of the observation matrix and the output torque signal of the PID controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信